THREE YEAR B.Sc./B.A. (CBCS) DEGREE EXAMINATIONS, OCTOBER/NOVEMBER, 2019

FIFTH SEMESTER \cdot

Part II – Mathematics

Paper V — RING THEORY & MATRICES

Time : 3 Hours

Max. Marks: 75

PART – A పార్ట్ – ఎ

Answer any FIVE of the following questions. క్రింది వానిలో ఏవైనా ఐదు ప్రశ్నలకు సమాధానములు వ్రాయుము.

 $(Marks: 5 \times 5 marks = 25 marks)$

1. If R is a ring and a, b, c, $d \in R$ then prove that

(a)
$$(a+b)(c+d) = ac + ad + bc + bd$$
.

(b) $a+b=c+d \Leftrightarrow a-c=d-b$.

R ఒక చలయమై $a, b, c, d \in R$ అయిన

- (a) (a+b)(c+d) = ac + ad + bc + bd
- (b) $a+b=c+d \Leftrightarrow a-c=d-b$ అని చూపండి.
- Prove that a field has no zero divisors.
 ఒక క్షేతానికి శూన్య భాజకాలు ఉండవని చూపండి.
- 3. If the characteristic of a ring is 2 and the elements a, b of the ring commutes then prove that $(a + b)^2 = a^2 + b^2 = (a b)^2$. పలయం R యొక్క లాక్షిణికం 2 అయి a, b లు R లోని మూలకాలైతే అవి వినిమయ ధర్మాన్ని పాటిస్తుంటే $(a + b)^2 = a^2 + b^2 = (a - b)^2$ అని చూపండి.
- 4. Prove that the ideals of a field are only $\{0\}$ and f itself. ఒక క్షేతము యొక్క ఆదర్శాలు $\{0\}$, f లు మాత్రమే అని చూపండి.
- 5. If f is a homomorphism of a ring R into the ring R' then f is an into homomorphism iff ker $f = \{0\}$. R వలయం నుండి R' వలయానికి f ఒక సమరూపత అయిన f ఒక సమరూపత కావడానికి ఆవశ్యక పర్యాప్త నియమం ker $f = \{0\}$.
- 6. The homomorphic image of a commutative ring is a commutative ring. వినిమయ వలయము యొక్క సమరూపతా ప్రతిబింబము వినిమయ వలయము అవుతుందని చూపండి.

7. Find the rank of the matrix $A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 7 & 1 \\ 5 & 9 & 3 \end{bmatrix}$. $A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 7 & 1 \\ 5 & 9 & 3 \end{bmatrix}$ ωτώσε stats state and the equation x + y + z = 4, 2x + 5y - 2z = 3, x + 7y - 7z = 5 are not consistent. x + y + z = 4, 2x + 5y - 2z = 3, x + 7y - 7z = 5 way substate and z = 3 and z = 3. 9. Find the characteristic roots and characteristic vectors of $\begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$. $\begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$ ωτώσε στατά and characteristic vectors of $\begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$. 10. If $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$ then express $2A^5 - 3A^4 + A^2 - 4I$ as a linear polynomial in A by using Cayley-Hamilton theorem. $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$ wound set with the states and the states are s

PART – B పార్ట్ – బి

Answer any FIVE of the following questions choosing atleast ONE question from each Section. ట్రపతి సెక్షన్ నుండి కనీసం ఒక ప్రశ్నను ఎంపిక చేసుకుని ఏపేని ఐదు ప్రశ్నలకు సమాధానములు వ్రాయుము.

(Marks : 5×10 marks = 50 marks)

SECTION – A

UNIT – I

11. If P is a prime then Z_p , the ring of integers (mod P) is a field.

P ఒక ప్రధాన సంఖ్య అయిన Z_p , పూర్ణాంకాల వలయం (mod P దృష్ణా) అవుతుందని చూపండి.

12. Prove that the set $Z(i) = \{a + bi/a, b \in z, i^2 = -1\}$ of Gaussian integers is an integral domain with respect to addition and multiplication of numbers. Is it a field? గాసియన్ పూర్ణాంకాల సమితి $Z(i) = \{a + bi/a, b \in z, i^2 = -1\}$ సంఖ్యల సాధారణ సంకలన, గుణనాల దృష్ట్యా పూర్ణాంక ప్రదేశము అవుతుందని చూపండి? ఇది ఒక క్షేతం అవుతుందా?

(5318MAT15)

UNIT – II

13. Prove that the set of all 2×2 matrices over the field of complex numbers is a ring with unity under addition and multiplication of matrices.

సాధారణ మాత్రికల సంకలన, గుణనాల దృష్ట్యా అన్ని 2×2 మాత్రికల సమితి, సంకీర్ణ సంఖ్యల క్షేతంపై ఒక వలయం అవుతుందని చూపండి.

14. Prove that every ideal of Z is a principal ideal. Z యొక్క ప్రతి ఆదర్శం ఒక ప్రధాన ఆదర్శం అవుతుందని చూపండి.

UNIT – ÌII

15. If U is an ideal of a ring R then the set $R/U = \{x + U/x \in R\}$ is a ring with respect to operations of addition and multiplication of cosets defined as follows :

(a + U) + (b + U) = (a + b) + U and (a + U)(b + U) = ab + U for a + U, $b + U \in R/U$.

R వలయానికి U ఒక ఆదర్శం అయిన $R/U = \{x + U/x \in R\}$ సహ సమితుల సంకలన మరియు గుణనాల దృష్ట్రా అనగా (a + U) + (b + U) = (a + b) + U మరియు (a + U)(b + U) = ab + U a + U, $b + U \in R/U$. అయినప్పుడు R/U ఒక వలయం అని చూపండి.

16. State and prove fundamental theorem of homomorphism of rings. వలయాలలో సమరూపతా మూల సిద్ధాంతాన్ని నిర్వచించి, నిరూపించండి.

SECTION - B

UNIT – IV

		1	2	-1	4	
		2	4	3	4	
17	Find the rank of the following matrix by reducing it into normal form	1	2	3	4	ľ
17.		_1	-2	6	-7	

పై మాత్రికను అభిలంబ రూపంలోకి మార్చి మాత్రికా కోటిని కనుక్కోండి.

18. Solve the equations x + y + z = 6, x - y + z = 2, 2x - y + 3z = 9 by matrix inversion method. x + y + z = 6, x - y + z = 2, 2x - y + 3z = 9 సమీకరణాల వ్యవస్థను మాత్రికా విలోమ పద్ధతి ద్వారా సాధించండి. 19. Find the eigen values and eigen vectors of the matrix $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \end{bmatrix}$

$$A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$
 మాత్రికను ఐగన్ విలువలు, ఐగన్ సదిశలను కనుక్ోండి.

20. State and prove Cayley Hamilton theorem. కేలే హ్యమిల్టన్ సిద్ధాంతాన్ని నిర్వచించి, నిరూపించండి.