
CSE II 1

Unit - I

Chapter I: Introduction to Algorithms and Programming Languages

1. What is Algorithm? Give its characteristics and example.
An algorithm is a step-by-step procedure of solving the given problem statement. Algorithms are
designed by using pseudo code. Pseudo code is a language independent code. All algorithms must
satisfy the following characteristics.
Input : Zero or more quantities are externally supplied
Output : At least one quantity is produced
Definiteness : Each instruction is in clear format
Finiteness : The algorithm must terminates after a finite sequence of steps
Effectiveness : Every instruction must be in basic format.
Basic rules followed while designing algorithms are:

 START and STOP statements are used for beginning and ending of the algorithm.
 READ and WRITE statements are used for input and output statements
 ← Symbol is used to assign values to the variables.

Control structures used in algorithms:
An algorithm has a finite number of steps and some steps may involve decision making and
repetition. There are mainly three control structures. They are (1) Sequence (2) Decision and (3)
Repetition.
1) Sequence:
Sequence means that each step of an algorithm is executed in the specified order i.e in sequential
order.

Example: Algorithm to add two numbers
Step 1 : Start
Step 2 : Read x, y
Step 3 : Sum ← x + y
Step 4 : Write sum
Step 5 : Stop

2) Decision:
Decision means execution of a process based on the result of a condition. The process may contain
one or more instructions. If the condition is true it executes one process. If the condition false it
executes another process.

The word “if” is used to specify decision in an algorithm. There are various forms of “ if”
constructs used in algorithms.

a. Simple ‘if’ construct: In this method if the condition is true then it executes a process.
Otherwise it will not execute the process.
Syntax: If condition then process

Example: Algorithm to check the equality of two numbers

Step 1: Start
Step 2: Input the first number as A
Step 3: Input the second number as B
Step 4: If A=B Then Print “Equal”
Step 5: End

Programming in C Prepared by Mahesh MCA

CSE II 2

b. IF.. Else construct: In this method if the condition is true then it executes process-1. If the
condition is false then it executes the process-2.
Syntax: If condition then

Process-1

 Else

Process-2

Example: Algorithm to check the equality of two numbers

Step 1: Start
Step 2: Input the first number as A
Step 3: Input the second number as B
Step 4: If A=B Then

Print “Equal”
Else

Print “Not Equal”
Step 5: End

 3) Repetition:
Repetition means executing one or more steps for a number of times. Repetition is also called
Iteration or Loop.

The words “While, Do..While, For” are used to specify repetition in an algorithm. These loops
execute one or more steps as long as the condition is true.

Example: Algorithm to print first 10 natural numbers

Step 1: Start
Step 2: Let x = 1
Step 3: Repeat steps 4 and 5 while x ≤ 10
Step 4: Print x
Step 5: Let x = x + 1
Step 6: End

2. What is flowchart? Which symbols you are using while designing flowcharts.
Pictorial or Graphical representation of an algorithm is called a flowchart. Flowcharts are
designed by using some specific symbols. The most import symbols used for designing flowcharts
are:
Start / Stop Statements: The symbol used for to show START / STOP statements is “Oval”.

Symbol :

Input / Output Statements : The symbol used to represent input statements and output

statements is “Parallelogram”.

Symbol :

Flow Lines : The symbol used to represent data flow from one place to another place is “Arrow”.

Programming in C Prepared by Mahesh MCA

CSE II 3

Symbol :

Arrow symbol actually connects every two symbols in the flowchart.
Process Statements : The symbol used to represent processing instructions is “Rectangle”.

Symbol :

Connector Symbol : The symbol used to connect two parts of the program flow is “Circle”.
Symbol :

When we reach the end of a column or a page, but total chart is not finished. In this case, at the
bottom of flow we use a connector to show that the flow continues at the top of the next column or
page.

Example :
:
: :

:

Additional symbols that used for designing flowcharts are:

Decision or Condition symbol : Decision diamonds create two data flow from one. A
decision diamond always has True / False or YES/NO written on the left and right
sides.
 Symbol:

Loop or Iterative symbol : This symbol has hexagon shape. It is used when a problem
has repetitive steps. i.e. a problem has solution with steps repeating again and again till
a condition or definite number of times.

Symbol:
Function or procedure or sub- program symbol: This symbol has a rectangle shape
with two cuts or lines inside. This can be labeled with the function or procedure name.
Every program has ends with a terminator shape i.e. with an oval.

Function:

Advantages of Flow Charts:
1. Flow charts are very good communication tools to explain the logic of a process.
2. They are more helpful for complex programs.
3. They are used of program documentation.
4. They can be used to debug programs easily to detect and remove mistakes.
5. They act a guide for the programmers to write program in any programming language.

Disadvantages of Flow Charts
1. Drawing flow charts is time consuming process. It takes more time to draw
2. A simple Modification may require complete re-drawing of the flow chart.

Programming in C Prepared by Mahesh MCA

STAR
T

A

A

STO
P

CSE II 4

Eg-1: A flow chart to add two
numbers

Eg-2: A flow chart to find
equality of two numbers

Eg-3: A Flow Chart for
Repetition (To print first 10
natural numbers)

3. What is programming language? Write a brief note the importance of
programming languages.
A programming language is a language specifically designed to express computations
that can be performed by the computer. Programming languages are used to create
program that control the behavior of a system, or as a mode of human – computer
communication.

Usually, programming languages have a vocabulary of syntax and semantics for
instructing a computer to perform specific tasks. The term programming language
usually refers to high – level languages such as BASIC, C, C++, COBOL, FORTRAN, Ada,
and Pascal etc.

High level programming languages are easy for humans to read and understand,
the computer actually understands the machine language that consists of numbers
only. Each type of CPU has its own unique machine language.

In between the machine language and high level languages, there is another type
of language known as assembly language. Assembly languages are similar to machine
languages, but they are much easier to program because they allow programmer to
substitute names for numbers.

Programming in C Prepared by Mahesh MCA

START

Read A

Read B

Let Sum =
A+B

Print
Sum

END

START

Read
A

Read
B

A=B

END

Print
“Equal”

Ye
s

No

START

Let I=1

I ≤
10

END

Print I
Yes

No

Let
I=I+1

A

A

CSE II 5

4. Explain in detail different types of programming language generations.

The concept of generations of programming languages is closely connected to the advances in
technology that brought about computer generations. There is five generation of programming
languages available.

1. Machine language (1GL)
2. Assembly language (2GL)
3. High - level language (3GL)
4. Very high - level Language (4 GL)
5. Fifth generation Languages (5GL)

First Generation: Machine Language
 This is lowest level of programming language.
 Only two symbols are used in writing the program using machine language.
 They are 0’s and 1’s. Writing the program in machine language is tedious.
 The programmer should have the inner details of computer.
 The main advantage of machine language is that the code can run very fast and efficiently.

Advantages
 Code can be directly executed by the computer.
 Execution is fast and efficient
 Program can be written to efficiently utilize memory.

Disadvantages
 Code is difficult to write.
 Code is difficult to understand by other people.
 Code is difficult to maintain.
 It is difficult to detect and correct errors.
 Code is machine dependent and thus non- portable.

SECOND GENERATION: ASSEMBLY LANGUAGE
 The second generation programming language includes the assembly language.
 Assembly languages are formed with the combination of mnemonic codes.
 These codes are easy to remember abbreviations rather than numbers. Which contain simple

English words like ADD, SUB and MUL etc.,
 Program written in assembly language and convert to machine language need a translator that

is known as assembler. I-e the computer will understand only the language of 1’s and 0’s and
will not understand mnemonics like ADD and SUB.

Advantages
It is easy to understand.
It is easier to write programs in assembly language than in machine language.
It is easy to detect and correct errors.
It is easy to modify
Disadvantages:
Code is machine dependent and thus non- portable.
Programmers must have knowledge of the hardware and internal architecture of the CPU.
The code cannot be directly executed by the computer.

THIRD GENERATION: 3GL
Third – generation languages are high - level languages.
Here instructions are written in statements like English language statements.

Programming in C Prepared by Mahesh MCA

CSE II 6

Each instruction in this language expands into several machine language instructions. Third

generation programming languages have made it easier to write and debug programs.
Third generation programming languages include languages such as BASIC (Beginners’ All –

Purpose Symbolic Code), FORTRAN (Formula Translator) and COBOL (Common Business
Oriented Language), C++ and Java.

Advantages:
 The code is machine dependent.
 It is easy to learn and use the language.
 It is easy to document and understand the code.
 It is easy to detect and correct errors.

Disadvantages:
 Code may not be optimized.
 The code is less efficient.
 It is difficult to write a code that controls the CPU, memory, and registers.

FOURTH GENERATION: VERY HIGH LEVEL LANGUAGE
 Fourth generation languages are non- procedural languages.
 Here programmers define only what they want the computer to do, without supplying all

the details of how it has to be done.
 Fourth generation languages need approximately one tenth the number of statements that a

high level language needs to achieve the same results.
 The main objectives of fourth generation language is

 Increasing the Speed of developing programs.
 Minimize the user efforts to obtain the information from computer.
 Decreasing the skill level required of users so that they can concentrate application rather

than coding.
 Five basic types of language tools fall into the fourth generation language category.

 Query language, Report generators, Application generator
 Decision support systems and financial planning languages.
 Some micro computer application software.

FIFTH GENERATION LANGUAGE:
 Fifth generation languages concentrate on Natural languages representation.
 5 GLs are designed to make the computer solve a given problem without the programmer.
 While working with 4Gl, programmers have to write a specific code to do work, but with a

5GL, they only have to worry about what problems need to be solved and what conditions
need to be met, without worrying how to implement a routine or an algorithm to solve
them.

 In general, 5Gls were generally built upon LISP, many originating on the LISP machine,

such as ICAD.
 These languages are also designed to make the computer “smarter”. Natural languages

already available for microcomputers include Clout, Q&A, and Savvy Retriever (for use
with data bases) and HAL (Human Access Language).

 Fifth generation programming languages are used in artificial intelligence research. Some

examples of 5GLs include Prolog, OPS5, and Mercury. A good example of fifth generation
language is Visual Basic.

LIST OF PROGRAMMING PRINCIPLES
1. Unstructured programming (USP)
2. Procedure oriented programming (POP)

Programming in C Prepared by Mahesh MCA

CSE II 7

3. Modular (or) structured oriented programming (SOP)
4. Object oriented programming (OOP)

1.Unstructured programming (USP): According to unstructured programming concept, program
is developed by organizing data and instructions in sequential order.
Draw backs of unstructured programming.

 Redundant data, Because of redundancy the size of program increases.
 Occupy more space, which reduce speed.
 There is no proper organization of data and operations.

Ex: Assembly languages, Machine Language are USP Programming
Languages.
2. Procedural oriented programming (POP)
Operations provided by a program are divided into small pieces and each piece of a program is
called subroutine.
Ex: COBAL, and PASCAL are called procedural oriented languages.
Advantages of procedural oriented programming:
Modularity: It is a concept of developing an application in sub modules i.e. procedure oriented
approach.
Reusability: Write once and use many times.
Simplicity: It is easy to understand operations of a program.
Efficiency: By reducing the size of a program efficiency of procedure oriented programs increases.
Characteristics of procedural oriented programming:

 Large programs are divided into small programs.

 Most of the functions share global data.

 Functions transform data from one another.

 Drawbacks of procedural oriented programming:

 Concentrated on development of functions.
 In large program it is very difficult to identify what data is used by which function.
 Debugging application is complex.

5.Write about structured programming language. Give its advantages.
 Structured program is a top down approach in which the overall

program structure is broken down into separate modules.
 It allows the code to be efficiently loaded into the memory and

to be reused in other programs.
 Structure oriented program is subset of procedural oriented

programming approach.
 In this approach reusability of subroutines are between the

programs.
 C is a structured oriented (or) procedure oriented programming

language.
Advantages:

 The goal of structured programming is to write correct programs that are easy to

understand and modify.
 Modules enhance the programmer’s productivity.
 With modules, many programmers can work on a single large program, with each working

on different module.
 A structured program can be written in less time than an unstructured program.
 Modules or procedures written for one program can be reused in both programs as well.

Programming in C Prepared by Mahesh MCA

CSE II 8

 A structured program is easy to debug.
 Individual procedures are easy to change as well as understand.

Chapter II: Introduction to C:

Introduction
The programming language C was developed in the early 1972s by Dennis Ritchie at Bell
Laboratories to be used by the UNIX operating system. It was named ‘C’ because many of its
features were derived from an earlier language called ‘B’.
History of C

1. The programming language term is started in the year of 1950’s with the language called
FORTRAN.

2. From FORTRAN language one more programming language is evaluated ALGOL.
3. The beginning of C is started in the year of 1967 with the language called BCPL. Basic

Combined Programming Language which is evaluated by Martin Richards.
4. In the year of 1970’s from BCPL one more programming language is evaluated by ken

Thomson called B language.
5. From ALGOL, BCPL and B; in the year of 1972 Dennis Ritchie was evaluated one more

programming language called C language. At Bell Labs for developing system software.
6. C was documented and popularized in the book ‘The C Programming Language’ by

Brian W. Kernighan and Dennis Ritchie in 1978. This book also popular that the
language came to be known as ‘K& RC’.

7. In the year of 1989 C programming language is standardized by ANSI that version is called
ANSI C.

8. In 1990 the international standards organization (ISO) adopted the ANSI standard. This
version of C came to be known as C89.

9. In 1995, some minor changes were made to C89, the new modified version was known as
C95.

10. In 1999, some significant changes were made to C95; the modified version came to be
known as C99.

11. In the year of 2000, C99 was adopted as an ANSI standard.

1.What are the Uses or characteristics of C language:
1. General Programming Language: It is a general purpose programming language. Hence, it is

used for writing system and application programs.
2. Maintainability: It is reliable, simple and easy to use.
3. System Programming: C language is used to develop compilers, operating systems and other

utility programs for system software.
4. Portability: C language is highly portable language i.e. a C program written on one computer

can be compiled and executed on a different computer.
5. Structured Programming Language: It supports many control structures such as “if, switch,

while, do…while, for” etc. to develop well defined and easy to maintain programs.
6. Modularity: Through modularisation, we can divide a large program into small modules

called functions.
7. Limited Keywords: It has only 32 keywords and several standard functions are available with

‘C’ are used for developing error free programs.
Applications of C

 To develop the system software like operating system and compilers.
 To develop the application software’s like spread sheets and databases.
 To develop the graphic related applications that s gaming application.
 To evaluate any mathematical problem C program language can be use.

Programming in C Prepared by Mahesh MCA

CSE II 9

2. Write about the structure of a C program?
A ‘C’ program can be viewed as a group of building blocks called functions. A function is
a self contained block of statements which perform a particular task. In order to write a
‘C’ program, first create the functions and then put them together.

BASIC STRUCTURE OF C PROGRAMS:

1) Document Section:
 This is an optional section
 This section consist information about the program
 It is not understand by compiler
 This documenttation is provided by using comments.
 C provides two types of comments.

1. Single line comments. (//)
2. Multi line comments. (/*…. */)

Ex: /* this is a c-program to find addition of 2 numbers */

Link section or preprocessor section

 Preprocessor statements are used to import different predefined functions into the program.
 This section is executed , before compiling the program and it is used for linking other

program with current program.
 The functions are included form the system library by the means of preprocessor directives.

 The system library consists of a set of header files names ‘stdio.h’, ‘math.h’, ‘conio.h’ etc.,
these are included using ‘#include’ statement.

 This statement is not terminated by a semicolon (;).

Programming in C Prepared by Mahesh MCA

CSE II 10

Definition section

 The definition section defines all the symbolic constants.

 The symbolic constants are defined by the statement ‘#define’.

 This statement is not terminated by a semicolon (;).

 Ex: #define pi 3.14

#define c 120

Global declaration section

 Global variables are used to share the data along all functions of the program.
 There are some variable that are used in more than one function. Such variable are known

as global variables.

 These variables are declared in the global declaration section, which is outside of all the
functions.

 These variables are accessed by entire program.

Main () function section

Every ‘C’ program must have one main() function section. It consists of two parts namely:

1. declaration part

2. executable part

 The declaration part declares all the variables that are used in executable part.

 The executable part must contain at least one statement.

 Every statement in declaration and executable parts should ends with semicolon (;) symbol.

Sub-program section

 The sub-program section contains all the user-defined functions that are called in the
main() function section.

 These functions can appeared in any order. These functions are placed immediately after
main() function section.

 Every ‘C’ program must contain main function while other sections are optional.

FIRST C PROGRAM

C programming language is a case sensitive language. I.e. upper case and lower case both are
treated as different.
When we are working with C language existing keywords and functions should be used in same
case only.
void main()
{
 printf(“Welcome to GMinformatics”);
}
OUTPUT: welcome to GMinformatics
In the above program:

 void is a keyword which indicates return type of the function.
 main() is a identifier which indicates starting point of the program.
 Opening curly brace indicates instruction block is started, closing curly brace is indicates

instruction block is ended.

Programming in C Prepared by Mahesh MCA

CSE II 11

 printf():- printf () is a predefine function, functionality of printf function is it prints
number of arguments must be within the double quotes and every argument should
separated with comma.

Within double quotation whatever we leave it prints as these. If any format specifier copy that type
of value.

3. Write about the files used in a C program? (Or)

Every C Program has four kinds of files associated with it. These include:

Source code files:
The source code file contains the source code of the program. The file extension of any C source
code file is ‘.c’.
Header files:
When we are working with large projects, it is often desirable to separate out certain subroutines
from the main function of the program. The advantage of header files can be realized in the
following cases:

 The programmer wants to use the same subroutines in different programs.
 The programmer wants to change or add subroutines.
 Header files names ends with a ‘dot h’ (.h).
 Standard header files in the program we have used printf() function that has not been

written by us. We do not know the details of how this function works. Such functions that
are provided by all c compilers are included in standard header files.
Examples of standard header files:
String.h: for string handling functions.
Stdlib.h: for some miscellaneous functions.
Stdio.h; for standardized input and output functions.
Math.h : for mathematical functions
Alloc.h : for dynamic memory allocation
Conio.h: for clearing the screen.

Object file:
Object files are generated by the compiler as a result of processing the source code file. Object
files contain compact binary code of the function definitions. Object files have ‘.o’ extension, and
some of the operating systems include Windows and MS- DOS have a ‘.obj’ extension for the
object files.
Binary executable files:
The binary executable file is generated by the linker. The linker links the various object files to
produce binary file that can be directly executed. On windows operating system, the executable
files have an ‘.exe’ extension.

Programming in C Prepared by Mahesh MCA

Files in a C
program

Source file
program

Header file
program

Object file
program

Executable file
program

CSE II 12

4. Write about the execution process of a C program? (Or)
 Write about the build process?

 The code written in C language is called the source

code. It is saved with .c extension (prog.c).
 A program called preprocessor process the source

code before compilation of the program. The
preprocessor generates the expanded source code or
intermediate code, which is saved with .i extension
(prog.i). The expanded source code is then sent to the
compiler.

 Debugger is a part of compiler, which identifies the

errors and warnings if any. If the expanded code is
error-free then the compiler generates the assembler
source , which is saved with .asm extension
(prog.asm)

 The assembler then converts the assembler source

into object code, which is saved with the either .obj
extensions (Prog.obj).

 As the final step, the linker links the runtime support

library to the object code and generates executable,
which is saved with .exe extension (prog.exe). It is
the actual build, which can be copied on to any other
machine and used as software.

Programming in C Prepared by Mahesh MCA

Prog.c

Prog.s

Prog.obj

Prog.ex
e

Runtime
Support

Preprocess
or

Linker

Executable
file

CP
U

Output

Source
code

Expanded
Source
code
Debugger

Compiler

Assembler
Source

Assembler

Object
code

CSE II 13

5. What is Comments in C? How can you use comments Give an example.
Many a time the meaning or the purpose of the program code is not clear to the reader. Therefore,
it is a good programming practice to place some comments in the code to help the reader
understand the code clearly. Comments are just a way of explaining what a program does.
Comments can be used anywhere in the program. It is not understand by compiler
C provides two types of comments.
 Single line comments. (//)
 Multi line comments. (/*…. */)
 /* author: Reema Thareja
 Description: To print ‘welcome to the world of C’ on the screen */
 #include<stdio.h>
 int main
 {
 printf(“ welcome to the world of C”); //print message
 return 0; // return a value 0 to the operating system
 }
Output: Welcome to the world of C.
6. Write about the concept of Tokens in C.

 Smallest unit of a program or an individual unit is called Token.
 When we are working with C program or an individual unit is called Token.
 Tokens can be keyword, operators, separators, constant and any other identifiers.
 When we are working with token we can’t split the token or we can’t break the token but

beginning the tokens we can use n number of spaces, Tabs and new lines.

 ‘C’ tokens are divided into 6 types. They are:
1. keywords
2. Variables
3. constants
4. strings
5. special characters

Programming in C Prepared by Mahesh MCA

CSE II 14

6. operators
Keywords:
It is a reserved word some meaning is already allocated to this word, and that meaning already
knows by compiler. In c programming language total number of keywords is 32. these keywords
cannot be used as an identifier.

ex:- if, else, break, while, case, goto.

Variable:
a variable is defined as a meaningful name given to a data storage location in computer memory. or
a variable is a quantity that does change during the program execution.

Constants:
It is a fixed never be changed during the execution of the program. In c programming language
constants are classified into two types.

o Alpha numeric constants.
o numeric constants

Strings:
A string is a sequence of character enclosed in double quotes. the character may be an alphabet,
number, special symbol and blank spaces.
Example: “MAHESH”, “MCA”, “gminformatics”
Special characters:
‘C’ supports some special operators of interest such as [], (), -->, * these are used as a separation,
pointer and some other special purposes.

Operators:

It is a special kind of symbol which performs a particular task. In c programming language total
number of operators 44.

7. What is identifier and write the rules to follow while selecting an
identifier?
An identifier is a name given to the program elements such as variables, arrays, and functions.
Identifiers may consist of sequence of letters, numerals, or underscores.

Rules for forming identifier names:

 Identifiers cannot include any special characters or punctuation marks (like #, $, ^,?,., etc)

except the underscore.
 There cannot be two successive underscores.
 Keywords cannot be used as identifiers.
 Identifiers can be of any reasonable length. They should not contain more than 31

characters.
 In identifier declarations name of the variable must starts with alphabet or underscore only.

Examples: roll_number, marks, name, emp_number, basic_pay, HRA, DA, dept_code

8. What is variable and write the rules to follow while selecting a variable?

Variable:
A variable is defined as a meaningful name given to a data storage location in computer memory.
Or
A Variable is a quantity that does change during the program execution.
Rules for forming identifier names:

Programming in C Prepared by Mahesh MCA

CSE II 15

 Name of the memory location is called variable.
 Before using any variable in the program it must be declare first.
 Declaration of variable means need to mention data type, name of the variable followed by

semicolon.
 In C programming language variable declarations must be exist top of the program after

opening the curly braces.
 In variable declarations name of the variable must starts with alphabet or underscore only.
 In variable declarations maximum length of a variable is 32 characters, after 32 characters

complier will not consider remaining characters.
 In variable declaration existing keywords operators, separators, constants and any other

special characters will be not allowed.
Syntax:
<Data type> <Name/list of the variable>
Example: int num;

num

9. Define data type? Explain different data types in C language.
Data types are the keywords and tell the compiler which type of data (information) is maintained
in memory.
 Data types will decide what type of values need to be hold into variables.

 In C programming language there are three types of basic data types are exist. i.e. char, int,

float.In C programming language there are 9 types of predefine data types are available.
 The advantage of classifying this many types is utilizing memory more efficiently and increase

the performance.

 Data Types

Primitive / Basic / Built-In Derived Data Types User-
Defined

 Data Types
Data Types

int Array Structure
char Function Union
float Pointer

Enumeration
double

1. BASIC DATA TYPES:

C compilers support five fundamental data types. They are integer (int), character (char), floating

point (float), double-precision floating point (double) and void.

Integer types:

Programming in C Prepared by Mahesh MCA

CSE II 16

It represents without fractional part. Negative values are also allowed. C has three classes of

integer storage. They are short int, int and long int, in both signed and unsigned forms. The size

and range of these types are shown in the following table:

SNO TYPE SIZE RANGE FORMAT SPECIFIER
1 int 2 -32678 to +32767 %d
2 short int 2 -32678 to +32767 %hi
3 signed short int 2 -32678 to +32767 %hi
4 unsigned int 2 0 t0 65535 %u
5 unsigned short

int
2 0 t0 65535 %hu

6 long int 4 -2147483648 to 2147483647 %li
7 unsigned long int 4 0 to 4294967295 %lu
Character Type:

A single character can be defined as a character (char) type data. Characters are usually stored in 8
bits (One byte) of internal storage. The qualifier signed or unsigned may be explicitly applied to
char.

Floating Point Types:

Floating point numbers represents with fraction values. These are stored in 32 bits, with 6 digits

precision. Floating point numbers are defined by C by the keyword float. When the accuracy

provided by a float number is not sufficient, the type double can be used to define the number. A

double data type number uses 64 bits giving a precision of 14 digits. These are known as double

precision numbers. To extend the precision further, we may use long double which uses 80 bits.

Void Types:

The void type has no values. This is usually used to specify the type of functions. The type of a

function is said to be void when it does not return any value to the calling function.

2. DERIVED DATA TYPES:

In implementation whenever the basic data types are not supports user requirement then go derived
data types of C language.derived data types are created from basic data types only. But extending
the size and ranges of basic data type.
Array:

Programming in C Prepared by Mahesh MCA

SNO TYPE SIZE RANGE FORMAT SPECIFIER
1 char 1 -128 to 127 %c
2 Signed char 1 -128 to 127 %c
3 unsigned char 1 0 to 255 %c

SNO TYPE SIZE RANGE FORMAT SPECIFIER
1 float 4 3.4E- 308 to 3.4E+38 %f
2 double 8 1.7E-308 to 1.7E+308 %lf
3 long double 10 3.4E-4932 to 1.1E + 4932 %lf

CSE II 17

An array is a collection of memory locations which can share same data name and same data type
values.
Function:
Self contain block of one or more statements which is designed for a particular task is called
functions or sub program in an application called function.
Pointer:
A pointer is a variable which holds address of another variable. (Or)
3.USER DEFINED DATA TYPES:
All predefine data types are designed for basic operations only. i.e. it can work for basic data types.
In implementation whenever the primitive data types are not supporting user requirement then go
for structures.
Structure:
Structure is a collection of different data type variables in a single entity.Structure is a collection of
primitive and derived data type variables.By using structures we can create user defined data types.
Union:
Union is a user defined type. It looks similar to structure, but the functionality differs. When a
variable belongs to union is created, it allocates the common memory allocation to all the
members.
Enumeration:
enum is a keyword. By using enum we can create sequence of integer content values.By using
enum we can create userdefined datatype of integer.

10. Write about the Constants or Literals used in C language?

It is a fixed never changed during the execution of the program. Constants are used to define fixed
values like pi or electron charge.
The literal values inserted in the code are called constants because we can't change these values. C
supports several types of constants (literals) as follows:

Integer Constants: An Integer constant refers to a sequence of digits. There are three types of
integer constants. They are: Decimal Integer, Octal Integer and Hexadecimal integer.
Decimal Integers: Decimal integers consists of a set of digits, 0 to 9, preceded by an optional – or
+ sign.
Ex: 123 -321 0 43564 +765
Octal Integers: An Octal integer constant consists of any combination of digits form 0 to 7, with a
leading 0.
Ex: 035 0 0435 0776

Programming in C Prepared by Mahesh MCA

Input and Output Streams in C

CSE II 18

Hexadecimal Integers: A sequence of digits preceded by 0x or 0X is considered as hexadecimal
integer. They may also include alphabets A to F or a to f. The letters A to F represent the numbers
10 to 15.
Ex: 0x2 0x9f oXbcd 0x
Real Constants or floating point constants:
Numbers with fractional part are called real constants. These are often called as floating point
constants. Real constants are generally represented in two forms are fractional form and
exponential form.
Ex: 0.0083 -0.75 456.76 +32.3
A Real number may also be expressed in a exponential notation
 Ex : Mantissa e exponent
 215.65 may be written as 2.1565 e + 2
 2.1565 x 102

Single Character Constants: A single character constant (or character constant) contains a single
character enclosed within a pair of single quote marks.
Ex: ‘5’ ‘X’ ‘;’ ‘ ‘
String Constants: A String constant is a sequence of characters enclosed in double quotes. The
character may be letters, numbers, special characters and blank spaces.
Ex: “Hello!” “MAHESH”, “Well Done” “gminformatics” “vsu updates”

11.Write about Input/ Output statements in C language.

Input output deals with the basic understanding of the streams involved in accepting input and
printing output in C program.
Streams: A stream acts in two ways. It is the source of data as well as the destination of data.
Streams are associated with a physical device such as a monitor or with a file stored on the
secondary memory. C uses two forms of streams text – and binary.
In text stream, sequence of characters is divided into lines with each line being terminated with a
new line character (\n). And binary stream contains data values using their memory representation.

Formatting Input /Output
C language supports two formatting functions printf and scanf.
printf():
printf() is a predefine function, functionality of printf function is prints every argument on
console. printf function its ‘n’ number of arguments but first argument must be within the double
quotes and every argument should separate with comma.
Programming in C Prepared by Mahesh MCA

Keyboar
d

DataInput text
stream

Monitor DataOutput text
stream

CSE II 19

Within the double quotation whatever we leave it prints as these, if any format specifier copies that
type of value.
syntax:
printf (“control string”, variable list);
scanf() :
scanf is a predefine function by using scanf we can read the data at runtime from user at run time.
Scanf function its ‘n’ number of arguments but first argument must be within the double quotes
and every argument should separated with comma.
Within the double quotation we need to pass proper format specifiers only. i.e. one type of values
we need to scan same type format specifier should be provided.
When we are working with scanf function argument list should be provided with ‘&’ symbol or
else values will be not store in proper variables.
syntax
scanf(“control sting”, arg1, arg2, arg3 …., argn)
Format specifiers:-it indicates what type of values needs to be printed on console.

 %d --------------------------> int
 %f----------------------------> float
 %c-----------------------------> char

12. Write about the operators used in C language?

C is having very rich built-in operators. An operator is a leading body that acts on specific
operands to result the task. These operators are classified into various types based on their role
played at different streams upon these.
Operator: - It is a special kind of symbol which performs in specific task.
Operand: - The objects on which the operators are acts upon are known as operands.
C operators can be classified into a number of categories. They are

1. Arithmetic operators
2. Relational operators
3. Logical operators
4. Equality operators
5. Unary operators
6. Conditional operators
7. Bitwise operators
8. Assignment operators
9. Comma operator
10. Sizeof operator

1. Arithmetic operators:
Arithmetic operators are used to build arithmetic Expressions in “C” program. Arithmetic
operators are used to perform both unary and binary arithmetic operations. The arithmetic
operators in “C” Language are

Programming in C Prepared by Mahesh MCA

CSE II 20

+, -, *, /, %

Operator Meaning Syntax
+ Addition a+b
- Subtraction a-b
* Multiplication a*b
/ Division a/b
% Modulo division a%b

2. Relational operators:
Relational operators are used in decision statements like if, while and for etc., these are the binary
operators used between any two operands. Any relational expression returns either true or false that
is 1 or 0. The relational operators in “C” language are <, >, <=, >=, ==, !=.

Operator Meaning
< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to

3. Logical operators:
The logical operators are used when we want to test more than one condition and make decisions.
Logical operators are also used to concatenate multiple relational expressions. Hence a logical
expression is called compound relational expressions. The result of any logical expression is either
true or false that is either 1 or 0.

Operator Meaning
&& logical AND
|| logical OR
! logical NOT

4. Equality operators: C language supports two kinds of equality operators to compare their
operands for strict equality or inequality.

Operator Meaning
== Return 1 if both operands are equal, 0 otherwise.
!= Returns 1 if operands do not have the same value, 0 otherwise.

5. Unary operators: Unary operands act on single operands. C language supports three unary
operators: Unary minus, increment, and decrement operators.
Unary minus: Unary minus operator is different from the binary arithmetic operator that operator.
When we are working with unary operator an operand is preceded by a a minus sign, the unary
operator negates its value. i.e if the number is positive then it become negative and if the number is
negative then it becomes positive.
Increment and decrement operators:
++, – – are the increment and decrement operators used to increment and decrement
the value of a variable by 1. These can be used as a postfix or prefix operators according
to the requirement.
6. Conditional operators:
Conditional operators are ternary category operators (? :).

Ternary category means it require three arguments.
o i.e. left, middle and right side arguments.

Programming in C Prepared by Mahesh MCA

CSE II 21

If the expression is true then it returns with middle argument, if the expression is
false then it returns with right side argument and left side argument is
expression or condition.

Note: Number of question marks and colons should be equal.
 Every colon should match with just before the question mark.
 Every colon should follow by question mark only.
Example: large = (a>b) ? a:b
7. Bit wise operators:
These are the special operators used for manipulation of data at bit level. These operators are used
for testing the bits or shifting them right or left. These may be applied to the float or double. The
bit wise logical operators are. &, |, ^, ~. Bitwise shift operators are >>, <<.
8. Assignment operator:
It is a binary category operator which is used to assign the right side value to left side. When we
are working with binary operators it should require and among those two operands.

Syntax: L=R;
9. Comma Operator:
The comma operator C takes two operands. It works by evaluating the first and discarding its
value, and then evaluates the second and returns the value as the result of the expression. Among
all the operators the comma operator has the lowest precedence.
int a=2, b=3, x=0;
10. The sizeof operator:
It is a unary operator cum keyword, always sizeof operator returns an intefger i.e. sizeof the even
argument. The size of operator is used to determine the amount of memory space that the variable,
or expression.
 m=size(sum);

13. Write about type conversion and typecasting
It is a concept of converting one data type values into another data type.
Type casting can be process by using type operator.
In implementation when we are expecting another format data from expression then go for type
casting.
Syntax:
Syntax
Data Type1 var1 = value;
Data Type2 var2 ;
Var2 = (Data Type) var1;
Ex: float f=12.9;
int i;
i= (int)f;
In C Programming language there are two types are type casting process exist.

 Implicit Type casting
 Explicit Type casting

Programming in C Prepared by Mahesh MCA

CSE II 22

Implicit Typecasting: It is a concept of converting the lower data type values into higher data
types.Implicit type casting is under control of compiler. i.e. as a programmer when implicit type
casting is occurred there is no need to be handle explicitly.
// An example of implicit conversion
#include<stdio.h>
int main()
{
 int x = 10; // integer x
 char y = 'a'; // character c

 // y implicitly converted to int. ASCII
 // value of 'a' is 97
 x = x + y;

 // x is implicitly converted to float
 float z = x + 1.0;

 printf("x = %d, z = %f", x, z);
 return 0;
}

Explicit Type casting: It is a concept of converting higher data type values into lower data types.
i.e. as a programmer when we are expecting explicit type casting then mandatory to use type
casting process or else data over flow will be occurred. It helps us to compute expressions
containing variables of different data types.

// C program to demonstrate explicit type casting
#include<stdio.h>

int main()
{
 double x = 1.2;

 // Explicit conversion from double to int
 int sum = (int)x + 1;

 printf("sum = %d", sum);

 return 0;
}

PROGRAMMING EXAMPLES:

STATEMENTS
A statement is a syntactic construction that performs some action when the program is
executed. In C language, statements are classified into three types as:

1. Simple (or) Expression Statements
2. Compound (or) Block Statements
3. Control Statements

1. Simple (or) Expression Statements
A simple statement is a single statement that ended with a semicolon.
Example: int x,y;

2. Compound (or) Block Statements
Any sequence of simple statements can be grouped together and enclosed within

a pair of braces termed as compound (or) block statements.
Example: {

Programming in C Prepared by Mahesh MCA

CSE II 23

int x=4, y=2, z;
z=x+y;
printf(“\nResult :%d”,z);

}
UNIT II

CHAPTER I: DECISION CONTROL AND LOOPING STATEMENTS
INTRODUCTION TO DECISION CONTROL STATEMENTS:
Generally, C program is a set of statements which are normally executed in sequential
order from top to bottom. But sometimes it is necessary to change the order of
executing statements based on certain conditions, and repeat a group of statements
until certain conditions. Such statements are called control statements. In C language,
control statements are classified into three categories as:

a) Selection (or) Decision Control Statements
b) Loop (or) Iterative Control Statements
c) Branch (or) Jump Control Statements

The control structures are used to control the flow of program execution. In C
language there are there are three types of flow statements are exist.

1. Write about the conditional branching or conditional selection statements
used in C language?
The conditional branching statements help to jump from one part of the program to another
depending on whether a particular condition is satisfied or not. These decision statements include:

1. If statement
2. if-else statement
3. if-else-if statement
4. switch statement

1. If statement: The simplest form of decision control statement that is generally used in decision
making. The general syntax of simple ‘if statement’ follows.

Programming in C Prepared by Mahesh MCA

Control statements

Selection statements
Conditional Statements
 Branching statements

Iterative statements Jumping statements

if

if- else

if- else-if

 switch

while

for

do-while

break

continue

 goto

CSE II 24

 Syntax of if statement:
if (condition)
{
 statement1;
 …………….
 statementn;
 }

If the condition is logically true (i.e. non-zero), the statement following the ‘if’ executed.When
there are multiple statements then they must be enclosed within curly braces ‘{ }’.
w.a.p Program to demonstrate simple if
#include<stdio.h>
#include<conio.h>
void main()
 {
 int age;
 clrscr();
 printf(" Enter age of the person : ");
 scanf("%d",&age);
 if(age>=18)
 printf(" The person is eligible to vote");
 printf(" \nThank you");
 getch();
 } O/P: Enter the age of the person: 30
 The person is eligible to vote.
 Thank you
2. If-else statement: Using else is always optional.In implementation we having alternate block of
condition then go for else part.When we are constructing the ‘else’ part mandatory to place ‘if’ part
also. Because without if there is no else among those if and else only one block will be executed.
i-e. When if condition false then only else part will be executed.

Syntax:
if(condition)
 {
 statement1;
 statement2;
 }
 else
 {
 statement3;

 }
w.a.p to find biggest of two numbers

#include<stdio.h>
#include<conio.h>
void main()
{
 int a,b;
 clrscr();
 printf(" enter two number: ");
 scanf(“%d%d”,&a,&b);
 if(a>b)
 printf("%d is biggest number",a);
 else
 printf("%d is biggest number",b);
 getch();

Programming in C Prepared by Mahesh MCA

CSE II 25

}

O/P: Enter two numbers: 20 30
 30 is biggest number.
3. If-else-If statement (Nested if else): If it is a concept of placing a condition part within another
condition. We can construct ‘n’ number of nested blocks but any type of editor can support up to
255 blocks.
Syntax:

if(condition1)
 {
 block 1;
 }
else if(condition2)

 {
 block2;
 }
else
 {

 block3;
 }
}

w.a.p to find biggest of two numbers
#include<stdio.h>
#include<conio.h>
void main()
{
 int a,b;
 clrscr();
 printf("enter 2 values:");
 scanf("%d%d",&a,&b);
 if(a==b)
 printf(" Two numbers are equal");
 else if(a>b)
 printf("%d is greater number",a);
 else
 printf("%d is smaller number",b);
 getch();
}

4) Switch case (case control structures)
By using series of ‘if’ statements we can make a selection in a number of alternatives, but it is too
complicated to develop. For this ‘C’ provides a special control statement that allows us to execute
one in a number of cases electively, that is called ‘switch statement’ or case control statement.

 Switch is a keyword. By using switch case we can create selection statements with multiple

choices.
 Multiple choices can be created by using case keyword.
 When we are working with switch it require condition or expression of type integer only
 When we are working with switch all case constant values will be mapping switch

condition return value.

Programming in C Prepared by Mahesh MCA

CSE II 26

 At the time of execution if condition return values is match with anyone of the cases then

from matching is up to break, everything will be executed, if the break is not exist
including default all cases will be executed.

 A default is a special kind of case which will execute automatically when the matching case

is not occurred.
 Using default is always optional, in implementation when we are not handling all cases of

the switch block then recommended go for default.
Syntax to switch case
switch(condition)
{
 case const1: Block1;
 break;
 case const2: Block 2
 break;
 case const3: Block 3;
 break;
 default: block n;
}
Advantages of using switch statement:

 Easy to debug.
 Easy to read and understand.
 Ease of maintenance as compared with

its equivalent if-else statement.
 Like if else statement switch statement also nested.
 Executes faster than its equivalent if-else construct.

w.a.p to perform arithmetic operations using switch case
#include<stdio.h>
#include<conio.h>
void main()
{
 int a,b,c,opt;
 clrscr();
 printf("Enter two numbers: ");
scanf("%d%d",&a,&b);
printf("Enter your choice 1 to 4: ");
scanf("%d",&opt);
 switch(opt)
 {
 case 1: c=a+b;
 printf("Addition of two numbers: %d",c);
 break;
 case 2: c=a-b;
 printf("Subtraction of two numbers: %d",c);
 break;
 case 3: c=a*b;
 printf("Multiplication of two numbers:%d",c);
 break;
 case 4: c=a/b;
 printf("Division of two numbers: %d",c);
 default: printf("Invalid option");
 }

Programming in C Prepared by Mahesh MCA

CSE II 27

 getch();
 }

2. Write about the iterative or looping control statements in C language?

Set of instructions give to the compilers to execute set of statements until condition became false
that is loop.
The way of repetitions are forms the circle, that’s why iteration statements are called loops. i.e.
loops means forming a circle. The basic purpose loop is code repetition.
In implementation whenever the repetition are occurred when instance of writing statement go for
loops.
In c programming language loops are classified into three types.

1. while loop
2. do-while loop
3. for loop

When we are working with iteration statements first it checks the condition and if the condition is
evaluated as true then loop block will be executed.
After execution of the statement block once again it checks the condition, if the condition is true
once again block will be executed.
While loop: When we are working with while loop always pre-checking process will occur and it
repeats in clock direction.

Syntax to while
 while (condition)
 {
 statement 1;
 statement 2;
 ………….
 ………….
 statement n;
 inc /dec;
 }
Working: It executes all the statements in the statement-block as long as the condition true. When
the condition false then the loop is terminated.

w.ap to demonstrate while loop.
#include<stdio.h>
#include<conio.h>
void main()
{
 int i=1;
 while(i<=10)
 {
 printf("\t %d",i);
 i=i+1;
 }
 getch();
 }
 O/P: 1 2 3 4 5 6 7 8 9 10
do-while:

Programming in C Prepared by Mahesh MCA

CSE II 28

In implementation if at least need to be executed the statement block once. Then go for
do-while. When we are working with do-while always post checking process will occur
i.e. after execution of the statement block only condition will be evaluated.
Syntax to do-while
do
{
 statement 1;
 statement 2;
 statement 3;
 inc/dec;
}while (condition);
Working: It executes all the statements in the statement-block first and then tests the condition.
When the condition true then the loop is repeated otherwise the loop is terminated.

w.a.p to demonstrate do- while loop
#include<stdio.h>
#include<conio.h>
void main()
{
 int i;
 i=1;
 do
 {
 printf("\t%d",i);
 i++;
 } while(i<=10);
 getch();
} O/P: 1 2 3 4 5 6 7 8 9 10
Note:- In do-while loop mandatory to place semicolons after while.
For loop: When we are working with for loop it contains three parts.

1. Initialization
2. Condition
3. Iteration

Syntax to for loop:
for(initialization; condition; iteration)
{

 statement block:

}
Working

 The execution process of the for loop always starts from initialization
 Initialization will be executed only once when we are entering into the loop first time.
 After execution of the initialization block control will pass to conditional block, if the

condition is evaluated as true then control will pass to statement block.
 After execution of the statement block control will pass to iteration block, after execution of

the iteration, once again the control will pass to the condition.
 Always the repetitions will happen between condition, statement block and iteration only.
 When we are working with for loop everything is optional, but mandatory to place two

semicolons.

Programming in C Prepared by Mahesh MCA

CSE II 29

 When we are working with for loop it repeats in anti clock direction.
w.a..p to demonstrate for loop

#include<stdio.h>
#include<conio.h>
void main()
{
 int n,i;
 clrscr();
 printf("Enter a range: ");
 scanf("%d",&n);
 for(i=1; i<=n; i++) //i<=n/2
 {
 printf("\t%d",i);
 }
 getch();
}

3. Write about the concept of nested loops in C.
Loop control statements can be placed within another loop control statement. Such representation
is known as nested loops. In these situations, inner loop is completely embedded within outer
loop.

Example: for(i=1; i<=n; i++) outer loop
{

for(j=1; j<=i; j++) inner loop
{

}

}
#include<stdio.h>
#include<conio.h>
void main()
{
 int r,i,j;
 printf("enter number of rows");
 scanf("&d",&r);
 for(i=1;i<=r;i++)
 {
 printf("\n");
 for(j=1;j<=i;j++)
 printf("*");
 }
 getch();
}
3. Write about the break and continue (Jumping or Skipping) statements
used in C language? Or unconditional branching statements.
Branch control statements are used to transfer the control from one place to another place. C
language provides three branch control statements. Those are

i) break statement ii) continue statement iii) goto statement

break statements:
Programming in C Prepared by Mahesh MCA

CSE II 30

 ‘break’ is a keyword by using break we can terminate loop body of switch body.
 Using break is always optional. But it should be exist within the loop body or switch body

only.
 In implementation where we know maximum number of repetitions but certain condition is

there we need to stop the repetition process, and then go for break. A break is usually
associated with an ‘if’.
Syntax: break;

w.a.p to demonstrate break statement
#include<stdio.h>
#include<conio.h>
void main()
{
 int i=1;
 while(i<=10)
 {

 if(i==6)
 break;
 printf("\t Mahesh");
 i=i+1;
 }
 getch();

 } O/P: Mahesh Mahesh Mahesh Mahesh Mahesh
The ‘continue’ statement:

 Continue is a keyword by using ‘continue’ we can skip some of statements from loop body.
 Using continue keys always optional. But it should be within the loop body only.
 In implementation where we knows maximum number of repetitions but certain conditions

is there where we need to skip the statement block of loop body then go for continue.
 A ‘continue’ is usually associated with an’if’.

Syntax: continue;
Write a C++ program to demonstrate continue statement.

#include<stdio.h>
#include<conio.h>
void main()
{
 int i;
 for(i=1;i<=10;i++)
 {
 if(i==6)
 continue;
 printf("\t %d",i);
 }
 getch(); } O/P: 1 2 3 4 5 7 8 9 10

The ‘goto’ statement
goto is a keyword by using goto we can pass the control anywhere in the program within the local
scope.

 ‘goto’ always refers a identifier followed by colon is called label.
 Any valid identifier followed by colon is called label.
 When we are working with ‘goto’ it makes the program in unstructured manner.

Syntax:
statement 1;
Programming in C Prepared by Mahesh MCA

CSE II 31

statement 2;
goto label;
statement 3;
Label:
statement 4;
statement 5;
/*demonstrating 'goto' statement*/
#include<stdio.h>
#include<conio.h>
void main()
{

 clrscr();
 printf("Mahesh");
 goto ABC;
 printf("X");
 printf("Y");
 printf("Hello");
 ABC:
 printf("\t MCA");
 getch();
} O/P: Mahesh MCA

CHAPTER II: FUNCTIONS

What is function? Give its advantages.

Function: Self contain block of one or more statements which is designed for a
particular task is called functions or sub program in an application called function.

Syntax:
return type function name (parameters)

{
 statement body;

 return statement;
 }
Advantages:

 By using functions we can develop an application in module format.
 When we are applying the application in module format then easily we can develop

easily we can debug and trace the program.
 By using functions large applications can be design like a smaller one.
 By using functions we can keep track of what they are doing.
 The basic purpose of function is code reuse.
 A C program is a collection of functions.
 From any function we can invoke (call) any another function.
 Always compilation process will starts from top to bottom.

Programming in C Prepared by Mahesh MCA

CSE II 32

 Always execution process will starts from main to ends only.

Distinguish between Library functions and User defined functions in C and
Explain with examples.
In ‘C’ functions can be divided into two types:

1. Library Functions
2. User-defined Functions

Library Functions: C provides library functions for performing some operations. These functions
are present in the c library and they are predefined. Prototypes and Function definitions for library
functions are available in some header files like math.h, stdio.h, conio.h etc.(scanf and printf are
also predefined functions whose prototypes and definitions are available in stdio.h header file).
Every compiler provides list of header files and their pototypes.
Examples: printf() scanf () clrscr () getch () sqrt () pow ()
User-Defined Functions: User-defined functions are defined by the user according to their
requirements.
Syntax 1:

To create and useuser define function we have to know these 3 elements.
1. Function Declaration

2. Function Definition

3. Function Call

1. Function declaration
The program or a function that calls a function is reffered to as the calling program or calling function.
The calling program should declare any function that is to be used later in the program this is known as
the function declaration or function prototype.
2. Function Definition
The function definition consists of the whole description and code of a function. It tells that what the
function is doing and what are the input outputs for that. A function is called by simply writing the
name of the function followed by the argument list inside the parenthesis. Function definitions have
two parts:
Function Header
The first line of code is called Function Header.
int sum(int x, int y)
It has three parts
(i). The name of the function i.e. sum
(ii). The parameters of the function enclosed in parenthesis
(iii). Return value type i.e. int
Function Body
Whatever is written with in { } is the body of the function.
3. Function Call
In order to use the function we need to invoke it at a required place in the program. This is known
as the function call.

1. What is a function and explain different parts of a function?
A complex problem can be divided into small and easily manageable parts. Each part
can be called as a module. In a program a module is defined using a function. Self

Programming in C Prepared by Mahesh MCA

CSE II 33

contain block of one or more statements which is designed for a particular task is called
functions.
A function accepts arguments from other functions, returns maximum a single value. A
C program has any number of functions. But execution starts from the main (). All the
functions other than the main are called sub function. Sub functions are executed when
they are called directly or indirectly from the main ().

Parts of function:
A function has the following parts:
1. Function prototype/declaration.
2. Definition of a function (function declarator)
3. Function call
4. Actual and Formal Arguments
5. The return statement.
1. Function Prototypes: A function prototype declaration consists of the function
return type, name, and arguments list. It tells the compiler the name of the function,
the type of value returned and the type and number of arguments. When the
programmer defines the function, the definition of function must be like its prototype
declaration. If the programmer makes a mistake, the compiler generates an error
message. The function prototype declaration statement is always terminated with semi-
colon.
Syntax:
<return type> function name (list of arguments type);
Example:
float adding(float,float);
2. Function Definition: The first line is called function declarator and is followed by
function body. The block of statements followed by function declarator is called as
function definition. The declarator and function prototype declaration should match
each other. The function body is enclosed with curly braces. The function can be defined
anywhere.
Syntax:
<return type> function name (List of formal arguments)
{

return <exp>;
}

Programming in C Prepared by Mahesh MCA

CSE II 34

Example:
float adding(float x,float y)
{
return x+y;
}

3. Function Call: A function call is a latent body. It gets activated only when a call to
function is invoked. A function must be called by its name, followed by argument list
enclosed in parenthesis and terminated by semi-colon.
Syntax:
<variable>=function name (List of actual arguments);
Example:
c=adding(a,b);
4. Actual and Formal Arguments: In function header whatever the variables we are
creating those are called formal arguments or parameters.In fnction calling statement
whatever the variables/data we are passing those variable are called actual arguments.
5. The return statement: The return statement is used to return value to other caller
function. The return statement returns only one value at a time.

Syntax: return (variable-name); or return variable-name;

4. Explain the various categories of user defined functions in C with
examples?
A function depending on whether arguments are present or not and whether a value is returned or
not may belong to any one of the following categories:
(i) Functions with no arguments and no return values.
(ii) Functions with arguments and no return values.
(iii) Functions with arguments and return values.
(iv) Functions with no arguments and return values.
(i) Functions with no arguments and no return values:-
When a function has no arguments, it does not return any data from calling function. When a
function does not return a value, the calling function does not receive any data from the called
function. That is there is no data transfer between the calling function and the called function.

#include<stdio.h>
#include<conio.h>
void add(); //function declaration
void main() //functions example program.
{

clrscr();
printf("welcome to functions..!");
add(); //function calling.
getch();

}
void add() //function definition.
{

int a,b;
printf("\nenter a & b values: ");
scanf("%d%d",&a,&b);
printf("\naddition : %d",a+b);

}
OUTPUT:

Programming in C Prepared by Mahesh MCA

CSE II 35

welcome to functions..!
enter a & b values: 30 20
addition : 50

(ii) Functions with arguments and no return values:-
When a function has arguments data is transferred from calling function to called function. The
called function receives data from calling function and does not send back any values to calling
function. Because it doesn’t have return value.

#include<stdio.h>
#include<conio.h>
void add(int,int); //function declaration
void main() //functions example program.
{

int a,b;
clrscr();
printf("welcome to functions..!");
printf("\nenter a & b values: ");
scanf("%d%d",&a,&b);
add(a,b); //function calling. call by reference.
getch();

}
void add(int a,int b) //function definition.
{

printf("\naddition : %d",a+b);
}
OUTPUT:
welcome to functions..!
enter a & b values: 30 20
addition : 50

(iii) Functions with arguments and return values:-
In this data is transferred between calling and called function. That means called function receives
data from calling function and called function also sends the return value to the calling function.

#include<stdio.h>
void main()
{
 int add_function(int x, int y);
 int a,b,sum;
 clrscr();
 printf("enter any two numbers: ");
 scanf("%d %d",&a,&b);
 sum=add_function(a,b);
 printf("the sum of %d and %d is %d: ",a,b,sum);
 getch();
}
int add_function(int x,int y)
{
 return(x+y);
}
OUTPUT

Programming in C Prepared by Mahesh MCA

CSE II 36

enter any two numbers: 50 30
the sum of 50 and 30 is 80:

(iv) Function With no Argument And Return Type:-
When function has no arguments data can not be transferred to called function. But the called
function can send some return value to the calling function.
#include<stdio.h>
#include<conio.h>
int sub();
void main() //functions example program.
{

clrscr();
printf("welcome to functions..!");
printf("\n subtraction : %d",sub()); //function calling
getch();

}
int sub()
{

int m,n;
printf("\nenter m & n values: ");
scanf("%d%d",&m,&n);
return m-n;

}

welcome to functions..!
enter m & n values: 30 20
 subtraction : 10

5. Write about different methods of sending parameters to the function?
 Write how to send parameters to the function?
 Write about pass by value and pass by address (reference).
Need of sending arguments:
The visibility or accessibility of local variables is limited to the function in which they are
declared. It is mandatory to promote function to function communication in order to develop
complex applications. Message passing in functions is done through sending parameters,
arguments or parametric values.
Arguments passing techniques:
In C programming language are two types of parameters passing techniques are available i.e.
1. Pass by value or call by value.
2. Pass by references or call by reference.
CALL BY VALUE:

 It is a concept of calling a function by sending value type data.
 In call by value actual arguments and formal arguments both are value type variable.
 In call by value any modifications are happen on formal arguments then those changes will

be not effected on actual arguments.
Ex: printf(), pow(), sqrt(),cos()

Example:
#include<stdio.h>
#include<conio.h>

Programming in C Prepared by Mahesh MCA

CSE II 37

void fun1(int,int);
void main()
{
int a=10, b=15;
fun1(a,b);
printf("a=%d,b=%d", a,b);
getch();
}
void fun1(int x, int y)
{
x=x+10;
y= y+20;
}
Output: a=10 b=15
The result clearly shown that the called function does not reflect the original values in main
function.

CALL BY ADDRESS:
 It is a concept of calling a function by sending address type arguments.
 In call by address actual arguments are address type and formal arguments are pointer type.
 In call by address if any modifications are happen on formal arguments then those changes

will be effected on actual arguments
 Calling function needs to pass ‘&’ operator along with actual arguments and called function

need to use ‘*’ operator along with formal arguments. Changing data through an address
variable is known as indirect access and ‘*’ is represented as indirection operator.

Ex: scanf(), strcpy(), strlen()

#include<stdio.h>
#include<conio.h>
void fun1(int *,int *);
void main()
{
int a=10,b=15;
fun1(&a,&b);
printf("a=%d,b=%d",a,b);
getch();
}
void fun1(int *x, int *y)
{
*x = *x + 10;
*y = *y + 20;
}

6. Define scope? Explain local and global variables with examples.
Scope is how far a variable can be accessed. The scope of variables is depends on
location where a variable is declared.
There are 3 types of scopes in which a variable can fall:
1. Block scope

2. Function scope or local scope

3. Global scope or file scope

Programming in C Prepared by Mahesh MCA

CSE II 38

1. Block Scope:
A variable is said to have block scope, if it is recognised only with in the block where it is
declared.The following example demonstrates this concept:

#include<stdio.h>
main()
{
{/*Block-1*/
int a;
a=10;
printf("%d\t%d",a,b);
}
{/*Block-2*/
int b;
b=20;
printf("%d\t%d",a,b);
}
}
2.Scope of local variables:
Variables declared within a function are called local variables. The visibility of these
variables is limited to the home function in which they are declared, local variables
belongs to one function can’t be accessed from another function.
Say for example, variables declared within main() are local to main(), can’t be accessed
directly from other function like display(). In the same way, variables belongs to display()
can’t be directly accessed from the main().
/* scope of automatic variable */
#include<stdio.h>
int main()
{
int x=10;
display();
return 0;
}
void display()
{
printf("x=%d",x);
}
Output:
Error: undefined symbol “x” in function display()
3.Scope of global variables:
Variables declared outside the functions are called global variables. These variables are
available along down to the program from their declaration. Global variables are visible
only to the functions, which are down to their definition, can’t be accessed from the
functions above to their definition.
/* Scope of global variables */
#include<stdio.h>
int x=10; /* global variable definition */
void display();
int main()
{

Programming in C Prepared by Mahesh MCA

CSE II 39

printf("x=%d",x); /* printing global variable */
display();
printf("\nx=%d",x); /* printing global variable */
return 0;
}
void display()
{
x=x+50; /* changing global variable */
}
Output: x=10 x=60
7. Write about Storage classes in C language.

Storage class provides information about their location and visibility. The storage class
decides the portion of the program within which the variables are recognized.
Storage classes are provides following information to compiler. i. e.

 Storage area of a variable (Where the variables would be stored.
 Scope of a variable i.e. in which block the variable will be visible.
 Life time of a variable i.e. how long the variable will be here in active mode.
 Default value of a variable, if it is not initialized initial value.

In C programming language storage classs are classified into two types. i.e.
o Automatic storage classes.
o Static storage classes.

Automatic storage classes:
 This storage class variable will be created automatically and destroyed

automatically.
 Automatic storage class variable will be hold in stack area of data segment or

register of CPU.
 Under automatic storage class we having two types of storage class specifiers.

1. auto
2. register

Auto:

Variable declared inside the function or block without a storage class specification, by default
compiler assigns ‘auto’ keyword and treated as automatic variable.

Ex : auto int x;

/* Example program for auto variables */
#include<stdio.h>
#include<conio.h>
void Fun();
void main()

Programming in C Prepared by Mahesh MCA

Storage
classes

Automatic Storage
classes

Static Storage
classes

auto register static extern

CSE II 40

{
auto int x=100;
clrscr();

 //++x;
printf("\nValue 1:%d",x);
Fun();

 getch();
}
void Fun()
{

int y=20;
printf("\nValue 2:%d",y);

}
Register:
It is a special kind of variable which stored in CPU register. Register variables are declared with
the keyword ‘register’. The main advantage is that accessing is very fast when compared memory
unit. In implementation we are using a variable throughout the program,then go for register
variables.
/* Example program for register variables */
#include<stdio.h>
#include<conio.h>
void main()
{

register int x;
clrscr();
x=10;
printf("\nValue :%d",x);

 getch();
}

Static storage class:
 This storage class variable will be created only once and throughout the program it

will there be there in active mode only
 Static storage class variable s will be hold in static area of data segment.
 Under static storage class we having two types of storage class specifiers.

1. static
2. extern

Static: Static variables are declared with the keyword ‘static’ either within the function or
outside the function. The advantage of static variables to retain updated values between
function calls.

Ex: static int x;

/* Example program for external static variables */
#include<stdio.h>
#include<conio.h>
void Fun();
static int x=10;
void main()

Programming in C Prepared by Mahesh MCA

CSE II 41

{
int i;
clrscr();
for(i=1;i<=3;i++)
{
printf("\nValue :%d",x);
Fun();
}

 getch();
}
void Fun()
{

x=x+5;
}

extern:
External storage class variables are declared outside the function with a keyword ‘extern’.
Variable declared outside the function without a storage class specification, by default
compiler assign ‘extern’ keyword and treated as external variables.

/* Example program for external variables */
#include<stdio.h>
#include<conio.h>
void Fun();
extern int x=100;
int y=200;
void main()
{

clrscr();
printf("\nValue

1:%d",x);
Fun();

 getch();
}
void Fun()
{

printf("\nValue 2:%d",y);
}

7. What is recursion and explain with any suitable example? (Or)
 Write program to accept any integer and print its factorial?
A function, which calls itself directly or indirectly again and again, is known as the recursive
function. Recursive functions are very useful while constructing the data structures like linked
lists, double linked lists and trees.
Iteration is the process of executing a statement or multiple statements repeatedly. Iterations can be
constructed in “C” language by two ways that is by using the predefined iterative control structures
and recursion. Recursive function will be involved by itself directly or indirectly as long as the

Programming in C Prepared by Mahesh MCA

Type Scope Life Default value

auto Body Body Garbage value
register Body Body Garbage value
static Function Progra

m
0

extern Program/function Progra
m

0

CSE II 42

given condition is satisfied. Some of the complex problems can be easily solved by implementing
recursion.
Recursions can be classified into two types
Direct recursion: Function itself is clled direct recursion.
void sum()
{
 ………
 ………
 sum()
}
Indirect recursion: Function calls another function, which initiates to call the initial function is
called indirect recursion.
void sum()
{
 ………
 ………
}
void call()
{
 ……….
 ……….
 sum()
}

/* program to accept any integer and print its factorial */
#include<stdio.h>
long factorial(int);
int main()
{
int n;
long fact;
printf("Enter an integer:");
scanf("%d",&n);
fact=factorial(n);
printf("Factorial of the number %ld",fact);
return 0;
}
long factorial(int n)
{
int f;
if(n==1)
return 1;
f=n*factorial(n-1);
return f;
}

Programming in C Prepared by Mahesh MCA

CSE II 43

UNIT – III

CHAPTER I: ARRAYS

1. What is array? Give its properties.

Definition: An array is a collection of memory locations which can share same data name and
same data type values.”
Syntax:
Data type array name [size];
Properties:

 An array is a collection of similar data type values in a single variable.
 An array is a derived data type in C which is constructed from fundamental data type of C

language.
 In implementation when we require ‘n’ number of similar data type values then go for array.
 The array variables are created at the time of compilation.
 When we are working with arrays all elements will allocated in continuous memory location

only.
 When we are working with arrays we can access the elements randomly. Because continuous

memory locations are created.
 When we are working with arrays all elements will share same name with unique

identification value called index. Which starts from zero and ends with ‘size-1’?
 When we are working with arrays we need to use array subscript operator i.e. []

2. Define array? write how to create,access and store elements into an array.
 Write about one dimensional array with example.
Array:
An array is a collection of memory locations which can share same data name and same data type
values.

Programming in C Prepared by Mahesh MCA

CSE II 44

Every element in an array is identified with an index. The index starts from 0. The index of the last
element is n-1, where n is the size of array. Every element in an array is free to participate in
arithmetic, relational and logical operations.
Declaration of a single dimensional array: Declaring an array means specifying three things.
Data type: What kind of values it can store. For example int, char, float and double.
Array name: To identify the array
Size: The maximum number of values than the array can hold.
Syntax:
<Data type> <name of array> [<size>]

Example:
int m [5];

 m[0] m[1] m[2] m[3] m[4]
Define an array by the name ‘m’ that can hold a maximum of 5 elements. The individual elements
of an array are accessed and manipulated using the array name followed by their index. The marks
stored in the first subject is accessed as m[0] and the marks scored in the 5th subject m[4].
Accessing data from an array:
To access elements from an array, index need to be changed from 0 to n-1 that can be done by
using a common loop.
for(i=0;i<size;i++)
a[i]

Array initilization:

Initializing while declaration of an array:
We can assign a set of values of similar type to an array while its declaration. Assigning
while declaration is called initializing. Elements of same type separated with comma (,)
and placed in a pair of parenthesis { } can be directly assigned using assigning operator
(=) to the array declaration statement. Values are assigned to the array in the same
order as in the order of set.
To access elements from the keyboard and store into an array, index need to be changed from 0 to
n-1 that can be done by using a common loop.
int i, int marks[5]
for(i=0;i<size;i++)
scanf(“%d”,&marks[i]);

Example:
int a[]={10,20,40,45,30,12}; /* size is optional */
#include<stdio.h>
int main()
{
int a[]={10,20,40,45,30,12};
int i;
printf("Elements of array:\n");
for(i=0;i<6;i++)
printf("%d\t",a[i]);
return 0;
}

Programming in C Prepared by Mahesh MCA

20 30 50 96 100

CSE II 45

3. Define array? Explain different methods to store values in an array?
Array:
An array is a collection of memory locations which can share same data name and same data type
values.Every element in an array is identified with an index. The index starts from 0. The index of
the last element is n-1, where n is the size of array.
Storing data into an array:
We can initialize the elements of the array in the same way as the ordinary variables when they are
declared.Three ways to Store values in the arry . The are 1) initilize the elements during
declaration 2)input values for the elements from keyboard 3) Assign values to individual elements.
Initilize values during declaration: Elements of an array can also be initilized at the time of
declaration. Assigning while declaration is called initializing.In implementation when an array
initilized we need to provide a value for every element in the array.

Syntax: datatype ArrayName[size] = {List of Values};

Here, List of Values is separated by comma operator.

int marks[5]={90,45,67,85,36};
int marks[4] = { 78,65};
int marks[] = {90,45,69,85};

Example:
int a[]={10,20,40,45,30,12}; /* size is optional */
#include<stdio.h>
int main()
{
int a[]={10,20,40,45,30,12};
int i;
printf("Elements of array:\n");
for(i=0;i<6;i++)
printf("%d\t",a[i]);
return 0;
}
Inputtng values from th ekey board: An array can be fillled by inputting values from the
keyboard.
To access elements from the keyboard and store into an array, index need to be changed from 0 to
n-1 that can be done by using a common loop.
int i, int marks[5]
for(i=0;i<size;i++)
scanf(“%d”,&marks[i]);
Assign values to individual elements: The third way is to assign values to individual elements of
the array by using assignmnet operator.
Marks[3]=100;
Here 100 is assigned to the fourth element of the array which is specified as marks[3].
/* Program to read and write array elements */
#include<stdio.h>
int main()
{
int a[5];
int i;

Programming in C Prepared by Mahesh MCA

CSE II 46

printf("Enter 5 integers:\n");
for(i=0;i<5;i++)
scanf("%d",&a[i]);
printf("The elements are:\n");
for(i=0;i<5;i++)
printf("%d\t",a[i]);
return 0;
}

4. How do you calculate the length of an array in C language?
An array is a collection of memory locations which can share same data name and same data type
values.

Every element in an array is identified with an index. The index starts from 0. The index of
the last element is n-1, where n is the size of array. Every element in an array is free to participate
in arithmetic, relational and logical operations.

In C language, there is no direct way to get how many elements are there in the array
(length), because all the elements of array have the same size, dividing the total size of the array by
the size of any one of the elements gives the number of elements in the array. Here we use element
0 because it is the only element guaranteed to exist, as arrays must have at least one element.
#include<stdio.h>
int main()
{
int a[5],len;
len=sizeof(a)/sizeof(a[0]);
printf("Length of array %d",len);
return 0;
}

5. Write about two dimensional arrays?
Two Dimensional Array
Collection of single dimensional array in a single variable is called two dimensional
array or array (array).

 In 2D array elements are arranged in rows and columns.
 When we are working with 2D array we need to use two subscript operators

which indicate row size and column size.
 The main memory of 2D array is row and sub memory is columns.

 In ‘2D array’ array name always gives base address of the array i.e. first row base
address, arr+1 is next main memory of the array. i.e. second row base address.

Declaration of matrix:
Syntax:
Data type array name [row size] [column size];
Example:
int a[3][5];
Here, every single dimensional array is considered as a separate row and elements are
considered as columns.

Programming in C Prepared by Mahesh MCA

CSE II 47

For two dimensional arrays, memory is allocated in terms of table format that contains collection

of rows and columns. So, that double dimensional arrays are useful for matrix representation of

given elements.

For the above example, memory allocation will be:

 0 1 2 3

 0

 K 1

2

 Let ‘m’ is the row size and ‘n’ is the column size, then a double dimensional array can be defined
as – “Double dimensional array is a collection of m x n homogeneous data elements that are stored
in m x n successive memory locations”.

Initializing a two dimensional array:
A set of sets of elements can be initialized while declaration of a two dimensional array. Here it is
mandatory to specify the dimension while initializing a two dimensional array.
Example

int num[5][2]= { {10, 20},
{30, 40},
{50, 60},
{70, 80},
{90, 100},

 };
Program for 2 Dimensional array
#include<stdio.h>
int main()
{
int a[][5]={{10,6,7,12,11},{23,32,14,52,22},{33,17,18,54,28}};
int i,j;
printf("Elements of matrix are:\n");
for(i=0;i<3;i++) /* selecting rows */
{
for(j=0;j<5;j++) /* traversing through the selected row */
printf("%5d",a[i][j]);
printf("\n\n"); /* Blank line between the rows */
}
return 0;
}
Output:
Elements of matrix are:
10 6 7 12 11
23 32 14 52 22
3317 18 54 28

6. How to send an array as an argument to the function?(Or)
How to send a single dimensional array as an argument to the function? (Or)
How to send a two dimensional array as an argument to the function?

Programming in C Prepared by Mahesh MCA

CSE II 48

One dimensional array for inter-function communication
Like a normal variable even an array can be send as an argument into the sub function. Here the
name of array is given as an actual argument with the calling statement. An array is defined as a
formal argument with the signature of function definition. Elements of actual argument (original
array) can be directly accessed by the formal argument from the sub function.
In case of single dimensional array, it is optional to specify the dimension (size) with the formal
argument and prototype and mandatory in case of two or multidimensional arrays.
While sending an array as an argument, even the size ‘n’ need to be send as an argument to control
the loop in sub function.
/* sending a single dimensional array as argument */
#include<stdio.h>
void display(int[],int)
int main()
{
 int a[] = {14,41,32,76,77,89}
 display(a,6);
 return 0;
}
void display(int p[], int n)
{
 int i;
 printf("elements of array : \n");
 for(i=0;i<n;i++)
printf("\t %d",p[i]);
}
/* sending a two dimensional array as argument */
#include<stdio.h>
void display(int[][],int,int);
int main()
{
int a[3][5]={{10,6,7,12,11},{23,32,14,52,22},{33,17,18,54,28}};
display(a,3,5); /* sending matrix as argument */
return 0;
}
void display(int b[3][5],int n,int m)
{

int i,j;
printf(“Elements of matrix..\n”);
for(i=0;i<n;i++)

 {
 for(j=0;j<m;j++)
 printf(“%5d”,b[i][j]);
 printf(“\n”);
 }
}

7.Discuss about the operations performed on arrays

There are a number of operations that can performed on arrays. These operations include:
 Traversing an array

Programming in C Prepared by Mahesh MCA

20 30 50 96 100

CSE II 49

 Inserting an element in an array
 Deleting an element from an array
 Merging two arrays
 Searching an element in an array
 Sorting an array in ascending or descending order

Traversing an array: Traversing an array means accessing each and every element of the array for
a specific purpose.
Inserting an element in an array: Inserting an element in an array means adding a new data
elements to an already existing array.
Deleting an element from an array: Deleting an element from an array means removing a data
element from an already existing array.
Merging two arrays: Merging two arrays in a third array means first copying the elements of the
first array into the third array and then copying the contents of the second array into the third array.
Searching an element in an array: searching means to find whether a particular value is present
in the array or not. If the value is present in the array then searching is said to be successful. And if
the value is not present in the array searching is said to be unsuccessful.
There are two popular methods for searching the array elements. i-e linear search and binary
search.
Sorting an array in ascending or descending order: to arrange the elements in ascending or
descending order.

CHAPTER – II STRINGS

7. What is string? How to declare and initilize strings?

 Group of characters or collection of characters or character array is called string.

 Within the single quotation of characters is called character constant. i.e ‘G’, ‘M’ etc.

 Always character constant returns an integer value i.e. ASCII value of the character.

 Within the double quotation any content is called string constant. i.e. “Mahesh”, “MCA” ,

“Mahesh soft solutions” etc.
 String constant always ends with null character. And null character representation is ‘\0’ and

ASCII value is 0.

Programming in C Prepared by Mahesh MCA

CSE II 50

 A string is a one dimensional array of characters terminated by a null (\0) character. The null

character is stored at the end of array of characters to mark the end of the string.
Declaring a String Variable:

To manipulate strings, an array must be declared with character data type. A string can be declared
as follows:
 Syntax: char arrayname[size];
 Here the ‘size’ is the number of characters in the array.

Example : char name[40]; char city[15]; etc.

Initializing a String Variable:

1. A string of characters can be stored in an array as follows:

Ex: 1. char name[7] = {‘M’,’A’,’H’,’E’,’S,’H’’,’\0’};

2. char city[7] = “NELLORE”; (OR) char city[] = “NELLORE”;

In the example-2, the null character is not needed. The compiler automatically inserts
‘\0’ character at the end. So, the conceptual view for the above examples is as shown
below:

N E L L O R E \0

Array of Strings (or) Two-dimensional character type array:
To store more than one string in the array, then the array can be declared as follows:

char arrayname[size1][size2];

Here, ‘size1’ specifies the number of strings and ‘size2’ refers the number of characters in each
string.

Example: char city[3][10] = {“NELLORE”,”VIJAYAWADA”,”AMARAVATHI”};

 City[0]

 City[1]

 City[2]

This example reserves three memory locations to store three strings. Each string may

contain ten characters (10 bytes). The conceptual view for the above declaration is above

table.

8. Explain how string is accepted and accessed (Reading/Writing) with an
example?
As C language has no special type to handle string, it is mandatory to stored in a character array
but, it is a difficult job to read and write a string character by character using a loop every time. C
language simplifies the process of reading and writing of string through printf() and scanf().
Reading a string:
It is enough to specify the address of character array with its name and a format specifier %s to the
scanf() to read and store the string into the character array. The scanf() automatically reads the

Programming in C Prepared by Mahesh MCA

N E L L O R E \0

V I J A Y A W A D A \0

A M A R A V A T H I \0

CSE II 51

string character by character, stores into the character array and a terminating character ‘\0’ is
automatically added at the end.
Example:
char x[50];
scanf("%s",x);
Writing a string:
Similar to scanf(), if we give the address of character array with its name and a format specifier %s
to the printf(), the printf() automatically prints the string character by character until the
terminating character ‘\0’.
Example:
printf(“%s”,x);
/* program to read and write a string */
#include<stdio.h>
int main()
{
char x[50];
int i;
printf("Enter any string:");
scanf("%s",x);
printf("The given string:");
printf("%s",x);
return 0;
}
Execution:
Enter any string: Mahesh
The given string: Mahesh

9. Write about different operations performed on a string? (Or)
 Write about any 5 string handling functions in C language?

In C language, there are several function are used to manipulate strings. These functions are
included in “string.h” file. The following are some of the most commonly used string functions:
1. Finding the length of a string:
Strlen():

 strlen() is a predefined function in the header file “string.h”

 By using this function we can find the length of the string.

 Strlen() function required one argument of type const char* and from given address it

returns length of the string.
 Length of the string is total number of characters including null.

 Syntax: strlen(string)

Program for Finding the length of a string
#include<stdio.h>
#include<string.h>
int main()
{

char x[50];
int l;
printf("Enter any string:");

Programming in C Prepared by Mahesh MCA

CSE II 52

scanf("%s",x);
l=strlen(x);
printf("The length of string %d",l);
return 0;

}

Execution:
Enter any string: Mahesh
The length of string 6
2. Reversing a string:
Strrev():

 strrev() is a predefined function defined within the header file “string.h”.

 By using strrev function we reverse the given string.

 Strrev function require one argument of type char*.

 from given address up to null entire content will be arrange in reverse order.

 Syntax: strrev(str)

Program for Reversing the length of a string
#include<stdio.h>
#include<string.h>
int main()
{

char x[50];
int i;
printf("Enter any string:");
scanf("%s",x);
strrev(x);
printf("The reverse string %s",x);
printf("%s",x);
return 0;

}
Execution:
Enter any string: Mahesh
The reverse string hsehaM
3. Copying a string:
Strcpy ():

 strcpy() is a predefined function defined with in the header file “string.h”

 By using ‘strcpy’ function you can copy a string into another string.

 ‘strcpy’ function require two arguments of type char* i.e an address of a string.

 When we are working with strcpy function from given address all source string content will

be copied to destination string position.
Syntax: strcpy(string1, string2);
Here ‘string1’ is destination string and ‘string2’ is source string. The contents of string2 are copied
to string1.

Program for copying a string
#include<stdio.h>
#include<string.h>
int main()
{

Programming in C Prepared by Mahesh MCA

CSE II 53

char x[50],y[50];
printf("Enter any string:");
scanf("%s",x);
strcpy(y,x); /* "x" is copied onto "y" */
printf("%s",y);
return 0;

}
Execution:
 Enter any string: Mahesh
 Mahesh
4. Concatenating a string to another:
Strcat() :

 strcat() is a predefined function defined within the header file “string.h”

 This function appends the contents of one string (source) to another string (destination).
 This is called concatenation of two strings.
 The contents of the source string are unchanged.

 Syntax: strcat(string1, string2);
Where ‘string1’ is destination string and ‘string2’ is source string. The contents of string2 are
appended to string1.
Program for concatenating a string
#include<stdio.h>
#include<string.h>
int main()
{

char x[50],y[50];
printf("Enter the first string:");
scanf("%s",x);
printf("Enter the second string:");
scanf("%s",y);
if(strcmp(x,y)==0)
printf("Equal");
else if(strcmp(x,y)>0)
printf("Biggest string %s",x);
else
printf("Biggest string %s",y);
return 0;

}
Execution:
Enter the 1st string: hello
Enter the 2nd string: sir
The resultant string is hellosir

5. Comparing any two strings:
 Strcmp() Function:
 strcmp() is a predefined function defined within the header file “string.h”

Programming in C Prepared by Mahesh MCA

CSE II 54

 This function is used to compare two strings.

 Syntax: strcat(string1, string2); Here,

1. If string1 is equal to string2 then it returns value 0
2. If string1 is less than string2 then it returns a negative (less than 0) value.
3. If string1 is greater than string2 then it returns positive (greater than 0) value.

Program for comparing any two strings
#include<stdio.h>
#include<string.h>
int main()
{
char x[50],y[50];
printf("Enter the first string:");
scanf("%s",x);
printf("Enter the second string:");
scanf("%s",y);
if(strcmp(x,y)==0)
printf("Equal");
else if(strcmp(x,y)>0)
printf("Biggest string %s",x);
else
printf("Biggest string %s",y);
return 0;
}

10. Write a program to convert a character of a string to upper case?
#include<stdio.h>
#include<string.h>
int main()
{
char s[50];
int pos;
printf(“Enter any string in lower case..\n”);
scanf(“%s”,s);
printf(“Enter the position:”);
scanf(“%d”,&pos);
if(pos<1||pos>strlen(s))
printf(“Invalid position”);
else
{
pos--;
s[pos]=s[pos]-32; /* converting a character to upper case */
printf(“The resultant string is %s\n”,s);
}
return 0;
}
Execution:
Enter any string in lower case..
america
Enter the position:3
The resultant string is amErica

11. Write a program to convert a character of a string to lower case?
#include<stdio.h>

Programming in C Prepared by Mahesh MCA

Execution:
Enter the first string: hello
Enter the second string: world
Biggest string: world

CSE II 55

#include<string.h>
int main()
{
char s[50];
int pos;
printf(“Enter any string in upper case..\n”);
scanf(“%s”,s);
printf(“Enter the position:”);
scanf(“%d”,&pos);
if(pos<1||pos>strlen(s))
printf(“Invalid position”);
else
{
pos--;
s[pos]=s[pos]+32; /* converting a character to lower case */
printf(“The resultant string is %s\n”,s);
}
return 0;
}
Execution:
Enter any string in lower case..
AMERICA
Enter the position:3
The resultant string is AMeRICA

Discuss about string and character functions
String manipulation functions that are part of ctype.h, string.h and stdlib.h. some charcter functions
contained in ctype.h. “ctype.h” header file support all the below functions in C language.
isalpha() function: it checks whether given character is alphabetic or not.

 Syntax: int isalpha (int x);

isdigit() function: it checks whether given character is digit or not.

 Syntax : int isdigit (int x);

isalnum() function: it checks whether given character is alphanumeric or not.

 Syntax: int isalnum (int x);

isspace() function: it checks whether given character is space or not.

 Syntax: int isspace(int x);

islower() function: it checks whether given character is lower case or not.

 Syntax : int islower(int x);

isupper() function: It checks whether given character is upper case or not.

 Syntax : int isupper (int x);

isxdigit() function: It checks whether given character is hexadecimal or not.

 Syntax : int isxdigit(int x);

Programming in C Prepared by Mahesh MCA

CSE II 56

tolower() function: It checks whether given character is alphabetic and converts to lowercase.

 Syntax : int tolower(int x);

toupper() function: It checks whether given character is alphabetic and converts to uppercase.

 Syntax : int toupper(int x);

C STRING FUNCTIONS:

String.h header file supports all the string functions in C language. All the string functions are
given below.

strcat() function: It concatenates two given strings. It concatenates source string at the end of
destination string.

Syntax :char * strcat (char * destination, const char * source);

Example:
strcat (str2, str1); – str1 is concatenated at the end of str2.
strcat (str1, str2); – str2 is concatenated at the end of str1.

strncat() function: It concatenates (appends) portion of one string at the end of another string.

Syntax :char * strncat (char * destination, const char * source, size_t num);

Example :
strncat (str2, str1, 3); – First 3 characters of str1 is concatenated at the end of str2.
strncat (str1, str2, 3); – First 3 characters of str2 is concatenated at the end of str1.

strcpy() function: It copies contents of one string into another string.
Syntax :char * strcpy (char * destination, const char * source);
Example:
strcpy (str1, str2) – It copies contents of str2 into str1.
strcpy (str2, str1) – It copies contents of str1 into str2.

strlen() function: It gives the length of the given string.

Syntax :size_t strlen (const char * str);

strlen() function counts the number of characters in a given string and returns the integer value.

It stops counting the character when null character is found. Because, null character indicates the
end of the string in C.

strcmp() function: It compares two given strings and returns zero if they are same.

If length of string1 < string2, it returns < 0 value. If length of string1 > string2, it returns > 0 value.
Syntax :int strcmp (const char * str1, const char * str2);

UNIT IV
Programming in C Prepared by Mahesh MCA

CSE II 57

CHAPTER I: POINTERS
1. What is pointer and write how to define a pointer and list few advantages?
A pointer is a variable which holds address of another variable. (Or)
A pointer is a derived data type in C which is constructed from fundamental data type of C
language.
Advantages:

 Normal variable stores the value whereas pointer variable stores the address of the variable.

 Pointers save the memory allocation.

 It promotes direct memory accessing, which improves the performance of the program.

 It allows to directly access the array elements using pointer arithmetic’s.

 Pointer makes possible to return multiple values to the calling function.

 Pointer is the key concept in using complex data structures.

 By using pointers we can access a variable which is define outside the function.

 By using pointers we can handle the data structures more effectively.

 When we are working with the pointers it can increase the execution speed.

Declaring a pointer variable: A pointer variable should be declared before using it. The pointer
variable is declared as follows
 Syntax: DtataType *ptr_variable;

 <data type of original variable> *<name of pointer>

 int *p;

 When we are working with pointers, we are using following operators.

& (Address of operator) : & symbol is used to get the address of the variable.
* (Dereference operator) : * symbol is used to get the value of the variable that the pointer is

pointing to. It is used to access the value of memory allocation indirectly through its address.

#include <stdio.h>
#include<conio.h>
int main()
{
int *p; /* declaration of pointer */
int x=345; /* declaration of variable */
p=&x; /* assigning the address to the pointer */
printf("x=%d",x); /* direst accessing */
printf("\nx=%d",*(&x)); /* indirect access through the address */
printf("\nx=%d\n",*p); /* indirect access through the pointer */
return 0;
}

Programming in C Prepared by Mahesh MCA

CSE II 58

2.Define pointer. Discuss about pointer expressions and pointer arithmetics.
A pointer is a variable which holds address of another variable.Like other variables pointer
variables can be used in expressions.
We can perform arithmetic operations on the pointers like addition, subtraction, etc. However, as
we know that pointer contains the address, the result of an arithmetic operation performed on the
pointer will also be a pointer if the other operand is of type integer. In pointer-from-pointer
subtraction, the result will be an integer value. Following arithmetic operations are possible on the
pointer in C language:

o Increment
o Decrement
o Addition

o Subtraction
Incrementing Pointer in C
If we increment a pointer by 1, the pointer will start pointing to the immediate next location. This
is somewhat different from the general arithmetic since the value of the pointer will get increased
by the size of the data type to which the pointer is pointing.The Rule to increment the pointer is
given below:

 new_address= current_address + i * size_of(data type)

#include<stdio.h>
int main(){
int number=50;
int *p;//pointer to int
p=&number;//stores the address of number variable
printf("Address of p variable is %u \n",p);
p=p+1;
printf("After increment: Address of p variable is %u \n",p); // in our case, p will get incremented b
y 4 bytes.
return 0;
}

Decrementing Pointer in C
Like increment, we can decrement a pointer variable. If we decrement a pointer, it will start
pointing to the previous location. The formula of decrementing the pointer is given below:

 new_address= current_address - i * size_of(data type)

#include <stdio.h>
void main(){
int number=50;
int *p;//pointer to int
p=&number;//stores the address of number variable
printf("Address of p variable is %u \n",p);
p=p-1;
printf("After decrement: Address of p variable is %u \n",p); // P will now point to the immidiate

previous location.

Programming in C Prepared by Mahesh MCA

CSE II 59

}

C Pointer Addition

We can add a value to the pointer variable. The formula of adding value to pointer is given below:

new_address= current_address + (number * size_of(data type))
#include<stdio.h>
int main(){
int number=50;
int *p;//pointer to int
p=&number;//stores the address of number variable
printf("Address of p variable is %u \n",p);
p=p+3; //adding 3 to pointer variable
printf("After adding 3: Address of p variable is %u \n",p);
return 0;
}

C Pointer Subtraction

Like pointer addition, we can subtract a value from the pointer variable. Subtracting any number
from a pointer will give an address. The formula of subtracting value from the pointer variable is
given below:

 new_address= current_address - (number * size_of(data type))
#include<stdio.h>
int main(){
int number=50;
int *p;//pointer to int
p=&number;//stores the address of number variable
printf("Address of p variable is %u \n",p);
p=p-3; //subtracting 3 from pointer variable
printf("After subtracting 3: Address of p variable is %u \n",p);
return 0;
}

3.Explain Null pointer and generic pointer.
NULL POINTER
Which pointer variable is initialized with null it is called null pointer. Null pointer will be not any
location.

A null pointer is a special type of pointer that cannot points to any where. Null pointer is assigned
by using the predefined constant NULL; which is defined by several header files including stdio.h,
stdlib.h and alloc.h.

Example: int *p=NULL;

Programming in C Prepared by Mahesh MCA

CSE II 60

/* EXAMPLE PROGRAM FOR NULL POINTER */
#include<stdio.h>
main()
{

int *p;
clrscr();
p=NULL;
printf("\nValue :%d",*p);

}
VOID POINTER

 Generic pointer of c and c++ is called void pointer. A void pointer is a special type of

pointer that can points to any data type.
 By using void pointer any datatype address can be hold and became access, manipulate the

data properly.
 Generic pointer means it can applied on any data type because type specification will be

exist at run time only.
 The size of void pointer is 2B

 When we are working with void pointers mandatory to use type casting process for

accessing the data.
 On void pointer we can’t applied arithmetic operations. i.e. incrementation of the pointer is

not possible.
Syntax: void *ptrvariable;

At the time of assigning address of the variable to ptrvariable, type casting must be placed to refer
the data item.

/* EXAMPLE PROGRAM FOR VOID POINTER */

main()
{

int a=10;
double b=3.45678;
void *p;
clrscr();
p=&a;
printf("\nValue 1:%d",*(int *)p);
p=&b;
printf("\nValue 2:%lf",*(double *)p);

}
4.Discuss about pointers and arrays
 Write about the pointer representation to an array?

The elements of an array can be efficiently accessed by using pointers. ‘C’ Language
provides two methods of accessing array elements. They are pointer arithmetic method and array
indexing method. However, pointer arithmetic will be faster.

To access array elements, the memory address of first element (base address) of an array
can be assigned to the pointer variable. Using this address we can access the remaining elements of
that array quickly.
Programming in C Prepared by Mahesh MCA

CSE II 61

For example,

 int a[10], *p;
p = &a;
here, it assigns the base address of the array variable ‘a’ to the pointer variable ‘p’. Now to

access element of a[4], we can write either a[4] or a+4 or *(p+4).
Example:

main()
{
 int a[20],i , n, *p;
 clrscr();
 printf(“How many values “);
 scanf(“%d”,&n);
 p = a; /* assigns base address of ‘a’ to ‘p’ */
 for(i=0;i<=n-1;i++)
 scanf(“%d”,(p+i)); /* inputs value to array thru pointer */
 for(i=0;i<=n-1;i++)
 printf(“%d”,*(p+i)); /* displays value of array thru pointer */
}
Array of Pointers:

A pointer can also be declared as an array. As pointer variable always contains an address,
an array of pointers contains a collection of addresses.

Syntax: datatype *arrayname[size];

Example:

main()

{
 int a=10, b=20, c=30, d=40;
 int *p[4];
 p[0] = &a;
 p[1] = &b;
 p[2] = &c;
 p[3] = &d;
}

In the above example, the pointer variable ‘p’ declared as an array with 4 elements. Hence, it can
hold 4 memory addresses of integer variables i.e. a, b, c and d. This can be as shown below:

a b c d

10 20 30 40

1234 2345 3456 5678

Programming in C Prepared by Mahesh MCA1234 2345 3456 5678

p[0] p[1] p[2] p[3]

CSE II 62

5. How do you pass arguments to the functions using pointers?
When we are working with C language any number of arguments can be send as arguments to a
function but only a single value can be returned to the calling function. It limits the flexibility of
application development. It can be overcome by pass by address.
Pass by address (Reference)

In this method addresses of actual arguments are sent to the function. Here the formal
arguments are the pointers hold addresses of actual arguments. By using indirect operator (*),
formal arguments can directly access the actual arguments of calling function. By using this
method, it is possible to send any number of values to the calling functions.

#include<stdio.h>
#include<conio.h>
void rectangle(int,int,int*,int*);
int main()
{
int l,b,area,peri;
printf("Enter two sides of rectangle:\n");
scanf("%d%d",&l,&b);
rectangle(l,b,&area,&peri);
printf("Area %d",area);
printf("\nPerimeter %d",peri);
return 0;
}
void rectangle(int x,int y,int *a,int *p)
{
*a=x*y;
p=2(x+y);
}

Programming in C Prepared by Mahesh MCA

CSE II 63

6. Write how to pass an array as an argument using pointer?
Like a normal variable even an array can be send as an argument into the sub function.

Here the name of array is given as an actual argument with the calling statement.
When we write the name of array as actual argument, it is the address of array that is being

passed as argument. The formal argument must be a pointer to store the address. Now the pointer
could refer every element of array from the called by function using pointer and address arithmetic

It is the reason why in case of array change formal argument results the change in actual
argument.
#include<stdio.h>
void process(short[],int);
int main()
{
short x[]={12,34,54,55,62,67};
short i;
process(x,6);
printf("Elements of array:\n");
for(i=0;i<6;i++)
printf("%5d",x[i]);
return 0;
}
void process(short *p,int n)
{
short i;
for(i=0;i<n;i++)
(p+i)=(p+i)+10;
}

Output:
Elements of array: 22 44 64 65 72 77

Programming in C Prepared by Mahesh MCA

CSE II 64

8. Dynamic Memory Allocation (DMA)
 DMA is a concept of allocation or de-allocating the memory at runtime. i.e. dynamically.By

using DMA we can utilize the memory efficiently.By using DMA whenever we want which
type, we want how much, we want that time, that type, and that much we can allocate
dynamically.

 DMA related functions are available in following header files.

<alloc.h>
<stdlib.h>
<malloc.h>
<mem.h>

Memory Management Functions:
malloc() Function:

It allocates memory space to a variable. The space must be specified in the form of bytes.
This function returns NULL if the allocation of memory fails. It means, if the memory is not
sufficient to allocate then it returns NULL.

The general format of malloc() function is as follows:
Syntax: pv = (type *) malloc(size);

Here ‘pv’ is pointer variable and ‘type’ is the data type of the variable. The size is a
numeric constant or expression that indicates the number of bytes allocated to the variable.
Example-1:

int *p;
p = (int *) malloc(4);

Here, it allocates 4 bytes of memory to the variable ‘p’. hence we can use the variable ‘p’ as two
elements of ‘int’ type.
Example-2:

int *p, n=5;
p = (int *) malloc(n*2);

This example allocates memory for 5 integers of two bytes each i.e. 10 bytes.
calloc() Function:

This function is also used to allocate space to a variable. But it initializes all the elements
with zero.
Syntax:

pv = (type *) calloc(n, size);
Here ‘pv’ is pointer variable and ‘type’ is the data type of the variable. The ‘n’ is number of

elements and the size specifies the number of bytes for each element.
Example-1:

int *p;
p = (int *) calloc(5, 2);

Example-2:
int *p, n=5;
p = (int *) calloc(n, 2);

free()function:

Programming in C Prepared by Mahesh MCA

CSE II 65

This function is used to release (remove) the memory allocated dynamically. When the
memory space is not required, then this function can be used.

Syntax: free(fp); where fp is file pointer

#include <stdio.h>
#include <conio.h>
#include <alloc.h>
int main()
{
 int*arr;
 int size,i;
 clrscr();
 printf("\nEnter no of Elements: ");
 scanf("%d",&size);
 arr=(int*)malloc(sizeof(int)*size);
 printf("\nDefault values: ");
 for(i=0; i<size; i++)
 printf("%d ",*(arr+i));
 //printf("%d ",arr[i]);
 printf("\nEnter %d values: ",size);
 for(i=0; i<size; i++)
 {
 scanf("%d",&arr[i]);
 }
 printf("\nArr list is: ");
 for(i=0; i<size;i++)
 printf("%d ",arr[i]);
 getch();
 free(arr);
 return 0;
}

CHAPTER II: STRUCTURE, UNION, AND ENUMERATED DATA TYPES

1. Explain the concept of Structures in C (or)
 What is structure and write a program to access and print student details?
Programming in C Prepared by Mahesh MCA

Enter no of Elements: 5

Default values: 30089 9762 23948 -29916
11780
Enter 5 values: 10 30 50 40 90
30

Arr list is: 10 30 50 40 90

In implementation when we need to deallocate
more than 64KB data then go for free function.

CSE II 66

 Structure is a collection of different data type variables in a single entity.
 Structure is a collection of primitive and derived data type variables.
 All predefine data types are designed for basic operations only. i.e. it can work for basic

data types.
 In implementation whenever the primitive data types are not supporting user requirement

then go for structures.
 By using structures we can create user defined data types.
 The size of the structure is sum of all number variables.
 The least size of structure is 1 byte.
 By using ‘struct’ keyword we can create structures.

Defining a Structure:
The keyword ‘struct’ is used to define a structure. The structure definition is as follows:
Syntax to create the structure:
Struct Tag_name(identifier)

{

 Data type1 member1;

Data type2 member 2;

………………….

};

Note: When we are constructing the structure body should be ended with semicolon. Because
semicolon only that structure body or an entity is terminated.

In the above syntax,
 The ” identifier” is the name of the structure

 Member1, member2, …, member-n are the individual members of the structures. These are

nothing but variables.

 Datatype refers the type of each individual member

Example

Struct emp

{

int Id;

char name[36];

int sal;

};

Accessing Structure Elements:
The individual structure elements(members) can be referred(accessed) by, specifying the structure
type variable name followed by a dot(.) operator and followed by a member name. In the above
example
e.id;
e.name;
e.sal;
Syntax to initialize the structure variables:
Structure tagname var={value1, value2…….};

Example:

emp e={105053011,Mahesh,25000}
Programming in C Prepared by Mahesh MCA

CSE II 67

Example program
#include<iostream.h>
#include<conio.h>
struct employee
{
 int eno;
 char ename[30];
 float sal;
};
void main()
{
 struct employee e={105053011,"mahesh",25000};
 clrscr();
 printf("Employee Number: ",&e.eno);
 printf("Employee Name: ",&e.ename);
 printf("Employee salary: ",&e.sal);
 getch();
 }

2. Write a c program to access and print student details using structures.
struct student
{
int regdno;
char sname[50];
char place[50];
long int pin;
};
int main()
{
struct student a;
printf(“Regd Number:”);
scanf(“%d”, &a.regdno);
printf(“Student Name:”);
scanf(“%s”, a.sname);
printf(“Place:”);
scanf(“%s”, a.place);
printf(“PinCode:”);
scanf(“%ld”,&a.pin);
printf(“Address:\n”);
printf(“Regd No:%d\nStudent Name:%s\nPlace:%s\nPin Code:%ld\n”,a.regdno,a.sname,a.place,a.pin);
return 0;
}

Programming in C Prepared by Mahesh MCA

CSE II Programming in C 68

3. Write about the nesting of structures?
Like a variable belongs to any primitive type, array even a variable belongs to another structure
can be defined as a member of structure. Variable belongs to structure would have the memory
allocation of inner structure members.

#include<stdio.h>
struct data
{
int x;
struct
{
int y;
int z;
}p;
};
int main()
{
struct data a;
a.x=10;
a.p.y=20;
a.p.z=30;
printf("x=%d\ny=%d\nz=%d",a.x,a.p.y,a.p.z);
return 0;
}

4. Write how to send a structure variable as an argument?
One of the main reasons of using struct type is to send all the details of a single entity as

single group rather sending multiple values to a function
While sending a struct variable as argument, we specify the name of struct variable as

actual argument and another struct variable is defined as a formal argument, so that, all the
members of actual argument will be assigned to the formal argument.

It is important to note that sending struct variable as argument follows pass-by-value
rather pass-by-reference. So the change in the members of formal argument will not change in
the values of actual argument.

struct book
{
char name[50];
char author[50];
char publisher[50];
float price;
};
void display(struct book);
int main()
{
struct book x={"Let us C","Kanithkar","BpB",275};
display(x);
return 0;

Programming in C Prepared by Mahesh MCA

CSE II Programming in C 69

}
void display(struct book a) /* members of x would be assigned to a */
{
printf("Book Name:%s",a.name);
printf("\nAuthor: %s",a.author);
printf("\nPublisher: %s",a.publisher);
printf("\nPrice:%f",a.price);
}

Output: Book Name:Let us c Author: Kanithkar Publisher: BpB Price:275.000000

5. What is union and why it is used?
Union is a user defined type. It looks similar to structure, but the functionality differs.

When a variable belongs to union is created, it allocates the common memory allocation to all
the members. The size of union variable is equal to the size of member with maximum length.
All the members share the same memory. Hence it is not possible to use all the members of a
union variable at a time. Union is mostly used as a generic type.

#include<stdio.h>
union num
{
char ch;
int x;
float y;
};

int main()
{
union num a;
printf(“Size of union variable %d Bytes\n”,a);
a.ch=’p’;
a.x=12356;
a.y=678.65310;
printf(“ch=%c\n”,a.ch);
printf(“x=%d\n”,a.x);
printf(“y=%f\n”,a.y);
return 0;
}
Output:
ch=
x=-239878
y=678.65310

By the above output it is proved that last assigned value (678.65310) is overwritten on previous
values. a.ch prints last byte binary equal of 678.65310, a.x prints last two bytes binary equal of
678.65310.
Union as a generic type:

Programming in C Prepared by Mahesh MCA

CSE II Programming in C 70

A union can have different members of different types. At a time we can store any single value
but of any member type. So any variable belongs to union is capable to store the data belongs to
any type called generic type.

#include<stdio.h>
union num
{
char ch;
int x;
float y;
};
int main()
{
union num a,b,c;
a.y=234.768956;
b.x=615;
c.ch='s';
printf("x=%f",a.y);
printf("\ny=%d",b.x);
printf("\nz=%c",c.ch);
return 0;
}

Output: y=234.768951

x=615 ch=s

6. Write the differences among the struct and union?
Thought the struct and union are user defined types and looks similar, functionality
and usage of both differs.

Structures Unions

It is a user defined type It is a user defined type

It is to store multiple values of different
types in a common memory

It is used as a generic type

Different fields are allocated for
different members

Common memory is allocated for all the fields

Different values can be stored in
different fields

Only one value can be stored in any union
variable

The size of variable is the sum of sizes
of all the fields

The size of variable is the size of field with
maximum size

6 It results no memory wastage It results memory wastage as we use a part in the
total memory allocation

Programming in C Prepared by Mahesh MCA

CSE II Programming in C 71

struct demo
{
float x;
short y;
char ch;
};
struct demo var;

union demo
{
float x;
short y;
char ch;
};
union demo var;

7. What is Enum explain it? (or) what is enumerated datatype ?
 enum is a keyword. By using enum we can create sequence of integer content

values.
 By using enum we can create userdefined datatype of integer.
 When we are working with enum it should be applied for integral data type only.
 The size of enum constants are 2B.
Syntax: enum tagname { const1=value,const2=value,…….};
Advantages:

1. It prevents the assignment of invalid value to variables.
2. This data type occupies only two bytes of memory.
3. The use of enumeration variables with in a program can increase the logical

clarity of the program
Disadvantages:

1. The enumeration constants cannot be read from the key board by using “cout”
statement.

2. When we are printing these variables, only the integer values associated with it will
be printed on the screen.

Example
#include <stdio.h>
#include<conio.h>
enum ABC{X,Y,Z};
void main()
{
 int a;
 a=X+Y+Z; //a=0+1+2;
 printf(“a value is ",a);

Programming in C Prepared by Mahesh MCA

CSE II Programming in C 72

 printf(“x values is ",X);
 printf(“Y value is ",Y);
 printf("z value is ",Z);
 getch();
}

UNIT V

FILES
Introduction
 File is a name of physical memory location in secondary storage area which

contains n number of information. i.e. collection of information.
 In implementation when we need to retrieve the input data from secondary storage

area and when we need to redirect the data to secondary storage area then go for
file operations.

 Generally secondary IO operations are called file operations.
 When we are working with standard I/O devices then it is called standard I/O

operations.
 In implementation when we are interact with secondary I/O operations then it is

called file operations.
 All file operations related functions are defined in stdio.h i.e <stdio.h>
 The files are generally classified into various type based on their data format and

type.

In order to read the data from the file or write the data to the file, first that the file
is to be opened. A file internal has to base references such are BOF (beginning of file)
and EOF (end of file). The beginning of file can be accessed with built in structure
called FILE. It is conglomerate data type, which holds all the attributes of the file,
such are permissions, file type, data and time of access and size in bytes.

C language is supported with rich set of library function, which can handle the
text, binary, and executable file belongs to various systems.

Definition: A file is a collection of bytes that contains some information permanently. A
file is created in secondary storage devices.

Programming in C Prepared by Mahesh MCA

CSE II Programming in C 73

Use of Files: We can use files to store data permanently in the memory. A file is created in the
secondary memory device such as hard disk. When a file is created, we can modify or delete data
present in the file as and when needed.

FILE datatype: To read and write data of files in ‘c’ language, we must use FILE datatype. It
is a structure datatype that is used to create file buffer area.

Syntax: FILE *fp;
Here, FILE is the name of datatype and ‘fp’ is file pointer which will contain all the

information about the file.
1.What is file ? how to open and close a file in C language.

Definition: A file is a collection of bytes that contains some information permanently. A file is
created in secondary storage devices.
Opening a File (fopen() function): A file should be opened before it is used in the
program. The fopen() function is used to open a file. If the file open operation is success, this
function returns a FILE pointer otherwise it returns NULL.
 Syntax: fp = fopen(filename,filemode) ;

In the above syntax,
1. The ‘fp’ is file pointer that is declared earlier with FILE datatype.
2. The ‘filename’ is a sting that represents name of the file in the secondary memory.
3. The ‘filemode’ is a string that contains special characters. It represents the purpose for

which the file is opened such as reading, writing and so on. The following are different file
modes used in ‘c’ language:

 Depending on the operations file modes are classified into six types.
1. Write(W):- when we are opening the file in ‘W’ mode then it opens the file in writing

purpose.
a. In write mode always new file will be created, if the file is already exist with the

name then it will deleted and new file will be created.
b. In ‘W’ mode file is exist or not always new file will be created.

2. Read(R):- open a file for reading purpose.
a. In ‘R’ mode if the file is already exist then fopen the file for reading.
b. If the file is not exist then it returns null.

3. Append(A):- open a file for writing purpose at end of the file.
a. In ‘A’ mode if the file is already exist then it will open for append, if the file is

already exist then open for append.
b. In ‘A’mode new file will be created when the file is not exist.

4. W+(write and read):- create a new file for update(writing and reading), if a file by that
name is already exists, it will overwritten (new file created).

a. In w+ mode always new file will be created, even though file is exist or not.
5. R+(read+write):- open an existing file for update (reading and writing) .

a. In ‘r+’ mode if the file is already exist then it opens for updating, if the file is not
exist then fopen function returns null.

Programming in C Prepared by Mahesh MCA

CSE II Programming in C 74

6. A+(w+r or r+w):- open for append, open for update at the end of the file, or create new file
if the file does not exist.In ‘a+’ mode if the file is not exist then only new file will be created.

Examples:
FILE *f1, *f2;
f1 = fopen(“student.dat”,”w”);
f2 = fopen(“employee.txt”,”r”);

Closing a File (fclose() function) : The opened file must be closed at the end of all input and
output operations done on it. The fclose() function is used to close an opened file. Once a file is
closed, we cannot perform any operation on that file until it is opened again.
Syntax: fclose(fp);

Here, ‘fp’ is file pointer that holds the opened file.

2. Write about functions used to perform read/write operations on files?
fputc():
It accepts two arguments that are the character that we want to write on to the file and a file
pointer. It writes the character onto the file through the file pointer.
fputc('g',fp);
It writes ‘g’ onto the file through file pointer fp
fgetc():
This function accepts the file pointer as argument and returns ASCII value of last fetched
(accessed) character from the file.
ch=fgetc(fp);
It reads character by character from the file through file pointer fp and assigns to ch
fputs()
It accepts two arguments that are the string that we want to write on to the file and a file pointer.
It writes string or line of text onto the file through the file pointer.
fputs(“india”,fp);
It writes ‘india’ onto the file through file pointer fp
fgets():
It accepts the address of a character array, the length of text has to fetch from the file and the file
pointer as arguments. It reads the specified length of text from the file and assigns to the
character array whose address has sent as argument.
fgets(str,40,fp);
It reads 40 characters from the file and stores into the string str
fprintf():

It works similar to printf() function but writes on to the file rather console output. It takes
three arguments that are the file pointer, format string and the list of variables. The list of values
of variables would be printed on to the file as per the format string.
fprintf(p,"%d\t%s\t%f\t%d\t%f\n",pcode,pname,price,qty,tot);
It prints the details of a product onto the file “product” through the file pointer “p”
fscanf():

Programming in C Prepared by Mahesh MCA

CSE II Programming in C 75

It is similar to the function scanf() but the difference is that, It fetches records row by row
from the formatted text file and stores into the specified variables as per the format specifier.

It accepts the file pointer, format string and the list of addresses of variables as
arguments, read the record from the file through the file pointer and stores into the specified
variables in a sequence.
fscanf(p,"%d%s%f%d%f",&pcode,pname,&price,&qty,&tot);

It fetches a record from the file “product” through the file pointer “p” and stores into the
specified variables.

3. Write programs to write and read the data onto the file?
WRITING DATA TO A FILE
i) fprintf() function: This function is used to store values into the file. It writes values based on
formatting characters specified.
Syntax: fprintf(fp, formatstring, valueslist) ;

Here, ‘fp’ is file pointer. The ‘formatstring’ contains formatting characters. The
‘valueslist’ contains one or more values separated by commas.

Ex: fprintf(fp, “%d %s %f”,rno, snm, avg);
ii) fputc() function: This function is used to store a single character into file.
Syntax: fputc(ch, fp);

Here, ‘ch’ is a character variable or constant and ‘fp’ is file pointer.
iii) fputs() function: This function is used to store a string into the file.
Syntax: fputs(string, fp);

Here, ‘string’ is a string constant or variable. ‘fp’ is file pointer.

Program to write text onto the file
#include<stdio.h>
int main()
{
FILE *p;
char ch;
p=fopen("igate","w"); /* opeing file */
while(1)
{
ch=getchar(); /* reading from Console Input */
if(ch==-1) /* checking end of file */
break;
fputc(ch,p); /* writing on to file */
}
fclose(p); /* closing the file */
printf("1 file is created..");
return 0;
}

READING DATA FROM A FILE

Programming in C Prepared by Mahesh MCA

CSE II Programming in C 76

i) fscanf() function:
This function is used to read values from the file and stores them into variables. It reads

values based on formatting characters specified.
Syntax: fscanf(fp, formatstring, variablelist) ;

Here, ‘fp’ is file pointer. The ‘format-string’ contains formatting characters. The
‘variable-list’ contains one or more variables.

Ex: fscanf(fp, “%d %s %f”,&rno, snm, &avg);
ii) fgetc() function:

This function is used to read a single character from the file and stores it in a variable.

Syntax: variable = fgetc(fp);
Here, ‘variable’ is a character type variable and ‘fp’ is file pointer.

iii) fgets() function:
This function is used to read the specified number of characters from the file and stores it

in a variable.
Syntax: fgets(str, n, fp);

Here, this function reads ‘n’ characters from the file ‘fp’ and stores it in the variable ‘str’.
Ex: fgets(nm, 10, fp);

Program to read text from the file
#include<stdio.h>
int main()
{
FILE *p;
char ch;
p=fopen("igate","r"); /* opening the file in read mode */
while(1)
{
ch=fgetc(p); /* reading character from the file */
if(ch==-1) /* checking end of file */
break;
printf("%c",ch); /* printing character on to the console output */
}
fclose(p); /* closing the file */

return 0;
}

DETECTING THE END OF FILE
When reading or writing data from files, we do not know exactly how long the file is. In

C, there are two ways to detect end of file.
i) EOF symbolic constant:

While reading the file in text mode, we can compare each character with EOF symbolic
constant. It is defined in stdio.h with a value -1.
Example:

Programming in C Prepared by Mahesh MCA

CSE II Programming in C 77

#include <stdio.h>
main()
{

int c;
FILE *fp;

While (...)
{

c = fgetc(fp);
if (c = = EOF)

break;
else

}

}

ii) feof() function:
This function checks whether end of file has been reached or not. It returns non-zero

when end of file is reached otherwise it returns zero.
Syntax: feof(fp); where ‘fp’ is file pointer

Example:
#include <stdio.h>
main()
{

FILE *fp;

While (!feof(fp))
{

}
}

4. Write C programs to write/Read student details onto the file
#include<stdio.h>
int main()
{
FILE *fp;
char sname[20];
int m1,m2,m3,tot,n,i;
float avg;
fp=fopen(“data”,”w”); /*Creating file */
printf(“How many records?”);
scanf(“%d”,&n);

Programming in C Prepared by Mahesh MCA

CSE II Programming in C 78

printf(“Enter the records..\n”);
for(i=1;i<=n;i++)
{
printf(“Student Name:”); /* Reading data from into the program */
scanf(“%s”,sname);
printf(“Enter the marks in 3 subjects:\n”);
scanf(“%d%d%d”,&m1,&m2,&m3);
tot=m1+m2+m3;
avg=(float)tot/3;
fprintf(fp,”%s\t%d\t%d\t%d\t%d\t%f\n”,sname,m1,m2,m3,tot,avg); /*Writing onto file */
}
fclose(fp); /* closing file */
return 0;
}

Reading student details from the file and writing onto monitor
#include<stdio.h>
int main()
{
FILE *fp;
char sname[20];
int m1,m2,m3,tot;
float avg;
fp=fopen(“data”,”r”); /* opening the file in read mode */
printf(“Students details are…\n”);
while(1)
{
fscanf(fp,”%s%d%d%d%d%f”,sname,&m1,&m2,&m3,&tot,&avg); /* reading from file */
if(feof(fp))
break;
printf(“%s\t%d\t%d\t%d\t%d\t%f\n”,sname,m1,m2,m3,tot,avg); /* writing on monitor */
}
fclose(fp); /* closing file */
return 0;
}

Discuss About Error Handling During File Operations
While reading data from or writing data to a file, it is quite common that an error occurs. The
following are the reasons that an error may arise.

 When trying to read a file beyond EOF indicator

 When trying to read a file that does not exist

 When trying to use a file that has not been opened

 When trying to write data to a file that has been opened for reading

If we fail to check for errors, then the program may behave abnormally. So an unchecked error
may stop execution of program or gives incorrect output.
ferror() :In C, ferror() library function is used to check for errors in the file. It checks for any
errors in the program. It returns zero if no errors have occurred. It returns a non-zero value if
there is any error.

The error indication will last until the file is closed or it is cleared by the clearer()
function.

Syntax: ferror(fp) where fp is file pointer

Programming in C Prepared by Mahesh MCA

CSE II Programming in C 79

Example:
#include <stdio.h>
main()
{

FILE *fp;

if (ferror(fp))
{

Printf(“there is an error in the file”);
}

}
Clearerr() function:

This function is used to clear the EOF and error indicators for the file. It is used because
error indicators are not automatically cleared.

Syntax: clearerr(fp) where fp is file pointer

Example:
#include <stdio.h>
main()
{

FILE *fp;

if (ferror(fp))
{

clearerr(fp);
}

}

Programming in C Prepared by Mahesh MCA

CSE II Programming in C 80

PROGRAMMING IN C LAB

1. Perfect number
AIM: To write a C program find out whether the given number is perfect or not.
ALGORITHM:
Step1: Start
Step2: declare variables n,i,sum0
Step3: print ‘enter a value’
Step4: Read n value.
Step5: for i1 to i<=n/2 in steps repeat step6
Step6: if n%i==0

6.1: sumsum+i
[end for loop]

Step7: if n==sum
7.1: print ‘Given number is perfect number’.
Else
7.2: print ‘Given number is not perfect number’.

Step8: Stop

PROGRAM:
/* 1.PROGRAM TO CHECK WHETHER A GIVEN NUMBER IS

PERFECT NUMBER OR NOT*/

#include<stdio.h>
#include<conio.h>
void main()
{
 int n,i,sum=0;
 clrscr();
 printf("enter a value:");
 scanf("%d",&n);
 for(i=1;i<=n/2;i++)

Programming in C Prepared by Mahesh MCA

OUTPUT
Case1: Enter a value: 8
 8 is not perfect number:

…………………………..

Case 2: Enter a value:6

CSE II Programming in C 81

 {
 if(n%i==0)
 sum=sum+i;
 }
 if(n==sum)
 printf("\n %d is perfect number",n);
 else
 printf("\n %d is not perfect number:",n);
 getch();
}

2. Armstrong number
AIM: To write a C program to check whether the given number is Armstrong or
not.
ALGORITHM:

Step1: start
Step2: Declare the variables n,temp,r, sum0
Step3: Write ‘enter a number’.
Step4: Read ‘n’ value.
Step5: tempn
Step6: if(temp>0) then

6.1: rtemp%10
6.2: sumsum+(r*r*r)
6.3: temtemp/10
6.4: got step6

Step7: if(sum==n)
7.1: Print :”Given number is Amstrong number”.
Else
7.2: Print “Given number is not Amstrong number”

Step8: Stop.

PROGRAM:
/* PROGRAM TO CHECK WHETHER A GIVEN NUMBER IS

ARMSTRONG NUMBER OR NOT*/

#include<stdio.h>
#include<conio.h>
void main()
{
 int n,temp,sum=0,r;
 clrscr();
 printf("enter a value: ");
 scanf("%d",&n);
 temp=n;
 while(temp!=0)
 {
 r=temp%10;
 sum=sum+(r*r*r);

Programming in C Prepared by Mahesh MCA

OUTPUT
 Enter a value: 153
 153 is Armstrong number
…………………………….
 Enter a value: 123
 123 is not Armstrong number

CSE II Programming in C 82

 temp=temp/10;
 }
 if(n==sum)
 printf("\n %d is amstrong number",n);
 else
 printf("\n %d is not amstrng number",n);
}

3. Sum of individual digits

AIM: To Write a C program to find the sum of individual digits of a positive integer.
ALGORITHM:
Step1: Start
Step2: declare variables n,sd0
Step3: print ‘enter a value’
Step4: Read ‘n’ value
Step5: while n>0 in steps repeat step6
Step6: sdsd+n%10

6.1: nn/10
[End while loop]

Step7: print ‘ sd’ value for sum of digits.
Step8: Stop
PROGRAM:

/* PROGRAM FOR SUM OF DIGITS OF A NUMBER */
#include<stdio.h>
#include<conio.h>
void main()
{
 int n,sd=0;
 clrscr();
 printf("enter a value: ");
 scanf("%d",&n);
 while(n>0)
 {
 sd=sd+n%10;
 n=n/10;
 }
 printf("\n sum of digits = %d",sd);
 getch();
}

4. FIBONACCI SERIES

AIM: To write a C Program Print Fibonacci series.
ALGORITHM:
Step1: Start

Programming in C Prepared by Mahesh MCA

OUTPUT:
Enter a value: 456

Sum of digits = 15

CSE II Programming in C 83

Step2: Declare the variables i,j,k,n

Step3: Print ‘enter a value’

Step4: read ‘n’ value

Step5: i0

Step6: j1

Step7: print i,j values

Step8: ki+j

Step9: while k<=n then repeat step10

Step10: print k value
10.1: ij
10.2:jk

10.3: ki+j
[End while loop]

Step11: stop

Program:

/* PROGRAM FOR GENERATING FIBONACCI SERIES*/
#include<stdio.h>
#include<conio.h>
void main()
{
 int i,j,k,n;
 clrscr();
 printf("enter a value: ");
 scanf("%d",&n);
 i=0;
 j=1;
 printf("\n %d %d ",i,j);
 k=i+j;
 while(k<=n)
 {
 printf(" %d",k);
 i=j;
 j=k;
 k=i+j;
 }
 getch();
}

5. Prime Numbers
AIM: To write a C program to generate all the prime numbers between 1 to given range.
ALGORITHM:
Step1: start

Programming in C Prepared by Mahesh MCA

OUTPUT
enter a value: 25
 0 1 1 2 3 5 8 13 21

CSE II Programming in C 84

Step2: declare the variables n,n1,n2,t, count0,flag

Step3: Print ‘enter two values”
Step3: Read n1, n2 values
Step4: for nn1 to n<=n2 in steps repeat step5
Step5: flag0

5.1: for t2 to t<=n2 in steps repeat step5.2
5.2: if n%t==0 then flag=1 and break
5.3: End for loop

Step6: if flag==1n and n!= 1
Step7: printf n value for prime numbers.
Step8: End for loop
Step9: Stop
PROGRAM:

 /* PROGRAM FOR TO PRINT PRIME NUMBERS BETWEEN RANGE */

#include<stdio.h>
#include<conio.h>
void main()
{
 long int n,n1,n2,t;
 int count=0,flag;
 clrscr();
 printf("Enter Two values: ");
 scanf("%ld%ld",&n1,&n2);
 for(n=n1; n<=n2; n++)
 {
 flag=0;
 for(t=2; t<n; t++) //t<=sqrt(n) <math.h>
 {
 if(n%t==0)
 {
 flag=1;
 break;
 }
 }
 if(flag==0&&n!=1)
 printf("\n%3d.PRIME=%5d",++count,n);
 }
 getch();
}

6. Largest and Smallest Number

Aim: To write a C program to find largest and smallest number in a list of integers.
Algorithm:
Step1: Start
Step2: declare the variables max,min, i
Step3: declare the array name ‘arr’
Step4: print enter the require values

Programming in C Prepared by Mahesh MCA

CSE II Programming in C 85

Step5: Read the array size using for loop
Step6: max=min=arr[0]
Step7: for i1 to i<size repeat step8 to 9

Step8: if arr[i]>max
8.1: max=arr[i]

Step 9: if arr[i]<min
9.1: min=arr[i]

Step10: print ‘max’ for maximum value
Step11: print ‘min’ for minimum value in the list
Step12: Stop
PROGRAM

/*6 PROGRAM FOR TO FIND LARGEST/SMALLEST OF N NUMBERS BY USING AN
ARRAY*/

#include <stdio.h>
#include <conio.h>
#define size 10
int main()
{
 int arr[size];
 int max,min;
 int i;
 clrscr();
printf("\nEnter %d Values: ",size);
 for(i=0;i<size;i++)
 scanf("%d",&arr[i]);
 max=min=arr[0];
 for(i=1;i<size;i++)
 {

if(arr[i]>max)
{
 max=arr[i];
 }
 if(arr[i]<min)
 {
 min=arr[i];
 }

 }
 printf("\nMaximum number in the list =%d",max);
 printf("\nMinimum number in the list=%d",min);
 getch();
 return 0;
}

7. Addition and Subtraction of matrix

Programming in C Prepared by Mahesh MCA

OUTPUT

Enter 10 Values: 10 20 30 40 60 80
160 5 69 41

Max=160

CSE II Programming in C 86

AIM: To Write a C program to find out the addition of given two matrices.
ALGORITHM:

Step1: start

Step2: Declare the variables i,j,m,n
Step3: take an array a[10][10],b[10],c[10][10]

Step4: Write ‘enter the row and column of the matrix’.
Step5: Red m,n values

Step6: Write ‘Enter the elements of matrix A’.
Step7: for i0 to i<m

7.1: for j0 to j<n
7.1.1: Read a[i][j]
7.1.2: ji+1
7.1.3: Repeat Step 7.1

7.2:ii+1
7.3: Repeat step7

Step8: Write ‘Enter the elements of matrix B’.
Step9: for i0 to i<m

9.1: for j0 to j<n
9.1.1: Read a[i][j]
9.1.2: jj+1
9.1.3: Repeat Step 9.1

9.2: ii+1
9.3: Repeat step 9

Step10: calculate the addition of matrix and store c.
10.1: for i0 to i<m

10.1.1: for j0 to j<n
10.1.2: c[i][j]a[i][j]+b[i][j]
10.1.3: jj+1
10.1.4: Repeat step 10.1.1

10.2: ii+1
10.3: Repeat step 10.1.

Step11: Write ‘addition of matrix A and B are’.
Step12: for i0 to i<m

12.1: for j0 to j<n
12.1.1: Read c[i][j]
12.1.2: jj+1
12.1.3: Repeat Step 12.1

12.2: ii+1
12.3: Repeat step 12.

Step13: Write ‘subtraction of matrix A and B are’.

Programming in C Prepared by Mahesh MCA

CSE II Programming in C 87

Step114: for i0 to i<m
14.1: for j0 to j<n

14.1.1: Read c[i][j]
14.1.2: jj+1
14.1.3: Repeat Step 12.1

14.2: ii+1
14.3: Repeat step 12.

Step13: Stop.
/*7PROGRAM FOR MATRIX ADDITION AND SUBTRACTION*/

#include<stdio.h>
#include<conio.h>
void main()
{
 int i,j,r,c,a[10][10],b[10][10];
 clrscr();
 printf("enter rows of a Matrix : ");
 scanf("%d",&r);
 printf("enter columns of a Matrix: ");
 scanf("%d",&c);
 printf("\n**\n");
 printf("Enter the elements of Matrix A \n");
 for(i=0;i<r;i++)
 {
 for(j=0;j<c;j++)
 scanf(" %d",&a[i][j]);
 }
 printf("\n Enter elements of Matrix B \n");
 for(i=0;i<r;i++)
 {
 for(j=0;j<c;j++)
 scanf(" %d",&b[i][j]);
 }
 printf("\n**************************\n");
 printf("matrix addition: \n");
 for(i=0;i<r;i++)
 {
 for(j=0;j<c;j++)
 printf(" %5d",a[i][j]+b[i][j]);
 printf(" \n");
 }
 printf("\n*****************************");
 printf("\n Matrix subtraction: \n");
 for(i=0;i<r;i++)
 {

Programming in C Prepared by Mahesh MCA

7. OUTPUT
enter rows of a Matrix : 2
enter columns of a Matrix: 2

Enter the elements of Matrix A
7 8 9 7
 Enter elements of Matrix B

4 8 3 1

matrix addition:
 11 16
 12 8

 Matrix subtraction:
 3 0

 6 6

CSE II Programming in C 88

 for(j=0;j<c;j++)
 printf("%5d",a[i][j]-b[i][j]);
 printf("\n");
 }
 getch();
}

8. String operations

AIM: To write a C program to perform various string operations:

Algorithm for concatenation of two strings:
Step1: Start

Step2: Declare character array s1, s2

Step3: Print ‘Enter first string”

Step4: Read s1

Step5: Print ‘enter second string’

Step6: Read s2

Step7: use ‘strcat(s1,s2)’ function

Step8: Print ‘s1’

Step9: Stop

/* CONCATENATION OF TWO STRINGS*/
#include <stdio.h>
#include <conio.h>
#include <string.h>
int main()
{
 char s1[30];
 char s2[30];
 clrscr();
 printf("enter first strinng: ");
 gets(s1);
 printf("Enter second string: ");
 gets(s2);
 strcat(s1,s2);
 puts(s1);
 getch();
 return 0;
}

Algorithm for comparison of two strings:
Step1: Start

Step2: Declare character array s1, s2

Step3: Declare the integer variable d

Programming in C Prepared by Mahesh MCA

OUTPUT
enter first strinng: uma

Enter second string: maheswari

umamaheswari

CSE II Programming in C 89

Step4: Print ‘Enter first string”

Step5: Read s1

Step6: Print ‘enter second string’

Step7: Read s2

Step8: dstrcmp(s1,s2)

Step9: Print ‘d’ value for ASCII value difference.

Step10: stop

/* COMPARISON OF TWO STRINGS*/
#include <stdio.h>
#include <conio.h>
#include <string.h>
int main()
{
 char s1[30];
 char s2[30];
 int d;
 clrscr();
 printf("Enter First string: ");
 gets(s1);
 printf("Enter second string: ");
 gets(s2);
 d=strcmp(s1,s2);
 printf("\nASCII Value diff=%d",d);
 getch();
 return 0;
}

Algorithm for Length of a string:
Step1: Start

Step2: Declare character array str

Step3: Declare the integer variable l

Step4: Print ‘Enter first string”

Step5: Read str

Step6: lstrlen(str)

Step7: print ‘l’ value for length of the string

Step8: Stop

/*LENGTH OF A STRING*/
#include<stdio.h>
#include<conio.h>

Programming in C Prepared by Mahesh MCA

OUTPUT:
Enter First string: welcome

Enter second string: hello

ASCII Value diff=15

CSE II Programming in C 90

#include<string.h>
int main()
{
 char str[30];
 int l;
 clrscr();
 printf("enter a string: ");
 gets(str);
 puts(str);
 l=strlen(str);
 printf("\nLenght of str:%d",l);
 getch();
 return 0;
}

9. Searching

Algorithm: To write a C program that implements searching of a given item in a given list.

Step1: start

Step2: take an array

Step3: declare the variables num, I, n, found=0, pos=-1

Step4: print ‘how many elements you want’.

Step5: read n value

Step6: print ‘enter the elements’

Step7: read the elements in the array

Step8: print ‘enter the number that has to be search’

Step9: read the number

Step10: for i0 to i<n repeat step 11

Step11: if arr[i]==num
11.1: found =1
11.2: POS=I

Step12: print ‘given number is found in the array’
[End for loop]

Step13: if found==0
13.1: print’ given number not in the list’

Step14: Stop

PROGRAM
/* PROGRAM TO IMPLEMENT SEARCHING OF GIVEN ITEM IN A GIVEN LIST*/

#include<stdio.h>

Programming in C Prepared by Mahesh MCA

OUTPUT
enter a string: sree chaitanya degree
college

Sree Chaitanya Degree College

Lenght of str:17

CSE II Programming in C 91

#include<conio.h>
int main()
{
 int arr[10], num,i,n,found=0,pos=-1;
 clrscr();
 printf("Enter the elements int he array: ");
 scanf("%d",&n);
 printf("Enter the elements : ");
 for(i=0;i<n;i++)
 scanf("%d",&arr[i]);
 printf("Enter the number that has to be search: ");
 scanf("%d",&num);
 for(i=0;i<n;i++)
 {
 if(arr[i]==num)
 {
 found=1;
 pos=i;
 printf(" \n %d is found in the array at position =%d",num,i);
 break;
 }
 }
 if(found==0)
 printf("\n %d does not exist in the array ",num);
 getch();
 return 0;
 }

10. Sorting numbers

Aim: To Write a C++ program to Sort the given set of number in ascending order.

Algorithm:
Step1: Start

Step2: Declare the variables i,j,n
Step3: take an array a[10]

Programming in C Prepared by Mahesh MCA

CSE II Programming in C 92

Step4: Print ‘enter array size’
Step5: read n value.

Step6: Print ‘enter elements into array’.

Step7: for i=0 to n-1 in steps of repeat step8
Step8: Read a[i]

[End for loop]
Step9: for j=0 to j<n-i-1
Step10: if(a[j]>a[j+1]) then

10.1: int ta[j]
10.2: a[j]a[j+1]
10.3: a[j+1]t
10.4: jj+1
[End for loop]
10.5: Repeat step10

Step11: Write after sorting
Step12: for i0 to n-1 insteps of 1 repeat step13
Step13: print a[i]

[End for loop]
Step14: Stop.

/*10.PROGRAM FOR SORTING AN ARRAY*/

#include <conio.h>
#define size 10
int main()
{
 int arr[size];
 int i,j,t;
 clrscr();
 printf("\nEnter 10 Values:");
 for(i=0;i<size;i++)
 scanf("%d",&arr[i]);
 for(i=0;i<size;i++)
 {
 for(j=i+1;j<size;j++)
 {

 if(arr[j]<arr[i])
 {
 t=arr[i];
 arr[i]=arr[j];
 arr[j]=t;
 }

 }
 }
 printf("\nAfter sorting....");
 for(i=0;i<size;i++)
 printf("%d ",arr[i]);

Programming in C Prepared by Mahesh MCA

OUTPUT

Enter 10 Values:85 63 74 96 45 65 36
12 1 6

After sorting....1 6 12 36 45 63 65 74 85
96

CSE II Programming in C 93

 getch();
 return 0;
}

All the best

G. Mahesh MCA

Lecturer in Computers

Programming in C Prepared by Mahesh MCA

	Incrementing Pointer in C
	Decrementing Pointer in C
	C Pointer Addition
	C Pointer Subtraction

