M.Sc. DEGREE EXAMINATION, NOVEMBER 2017.

FIRST SEMESTER

Branch - Mathematics

Paper I - ALGEBRA

(Old Syllabus)

e: 3 Hours

Max. Marks: 80

PART-A

Answer any FIVE questions. Each question carries 4 marks.

 $(Marks: 5 \times 4 marks = 20 marks)$

State and prove Cayley's theorem.

Prove that there are no simple group b order 63.

Let $f: R \to S$ be a homomorphic of a ring R into a ring S. Then prove that $\ker f = (0)$ if and only if f is 1-1.

Let R be a Boolean ring. Then show that each prime ideal $P \neq R$ is maximal.

Prove that an irreducible element in a commutative principal ideal domain (PID) is always prime.

Prove that every euclidean domain is a PID.

If R is a ring with unity then prove that an R-module M is cyclic if and only if $M \approx R/I$ for some left ideal I of R.

State and prove Schur's lemma.

PART - B

Answer ONE question from each Unit.

 $(Marks : 4 \times 15 \text{ marks} = 60 \text{ marks})$

UNIT-I

- (a) State and prove Burnside theorem.
- (b) Prove that every group of order $p^2(p)$ be prime) is abelian.

Or

State and prove second and third Sylow theorems.

UNIT-II

- 11. (a) State and prove fundamental theorem of homomorphisms.
 - (b) Let R be a ring. Then prove that $(R_n)^{\alpha r} = (R^{\alpha r})_n$

Or

- 12. (a) In a non zero commutative ring with unity, prove that an ideal M is maximal if a only if R/M is a field.
 - (b) Define nil potent. Prove that if R is a non zero ring unity 1 and 1 is an ideal q, R such that $I \neq R$, then there exists a maximal ideal M of such that $I \subseteq M$.

UNIT-III

13. Prove that every PID is a UFD, but a UFD is not aboossarily a PID.

Or

14. Let R be a unique factorization domain. Then prove that the polynomial ring R[x] ever R also a unique factorization domain.

UNIT-IV

- 15. Let R be a ring with unity and let M be an R-module. Then prove that the following statements are equivalent:
 - (a) M is simple.
 - (b) $M \neq (0)$ and M is generated by any $x(\neq 0) \in M$.
 - (c) $M \cong R/I$, where I is a maximal left ideal of R.

Or

16. Let M be a finitely generated free module over a commutative ring R. Then prove that a basis of M have the same number of elements.